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Abstract
Federated learning (FL) relies on a central authority to over-
see and aggregate model updates contributed by multiple
participating parties in the training process. This central-
ization of sensitive model updates naturally raises concerns
about the trustworthiness of the central aggregation server,
as well as the potential risks associated with server failures
or breaches, which could result in loss and leaks of model
updates. Moreover, recent attacks have demonstrated that,
by obtaining the leaked model updates, malicious actors can
even reconstruct substantial amounts of private data belong-
ing to training participants. This underscores the critical
necessity to rethink the existing FL system architecture to
mitigate emerging attacks in the evolving threat landscape.
One straightforward approach is to fortify the central ag-
gregator with confidential computing (CC), which offers
hardware-assisted protection for runtime computation and
can be remotely verified for execution integrity. However, a
growing number of security vulnerabilities have surfaced in
tandem with the adoption of CC, indicating that depending
solely on this singular defense may not provide the requisite
resilience to thwart data leaks.

To address the security challenges inherent in the central-
ized aggregation paradigm and enhance system resilience,
we introduce DeTA, an FL system architecture that employs
a decentralized and trustworthy aggregation strategy with a
defense-in-depth design. In DeTA, FL parties locally divide
and shuffle their model updates at the parameter level, creat-
ing random partitions designated for multiple aggregators,
all of which are shielded within CC execution environments.
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Moreover, to accommodate the multi-aggregator FL ecosys-
tem, we have implemented a two-phase authentication pro-
tocol that enables new parties to verify all CC-protected
aggregators and establish secure channels to upstream their
model updates. With DeTA, model aggregation algorithms
can function without any alterations. However, each aggre-
gator is now oblivious to model architectures, possessing
only a fragmented and shuffled view of each model update.
This approach effectively mitigates attacks aimed at tam-
pering with the aggregation process or exploiting leaked
model updates, while also preserving training accuracy and
minimizing performance overheads.

CCS Concepts: • Security and privacy→ Systems secu-
rity; • Computing methodologies→Machine learning
approaches.
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1 Introduction
Federated learning (FL) [37, 49] is a collaborative training
mechanism that enables multiple participating parties to
collectively build a machine learning (ML) model. FL allows
training participants to maintain their private data within
their domains and share only model updates. The security
advantages of FL make it an appealing choice for mutually
distrusting or competing parties, as well as for those holding
sensitive data, such as health or financial information, who
aim to preserve the privacy of their data and models.

FL can be categorized into two types: cross-device and
cross-silo. Cross-device FL is designed to scale to a vast num-
ber, often in the millions, of low-end mobile and Internet
of Things (IoT) devices. However, only a fraction of them
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may be online simultaneously as participant devices fre-
quently and unpredictably join and leave the training pro-
cess. Cross-device FL is typically initiated and managed by a
well-established trusted orchestrator, such as Google [28] or
Apple [15]. In contrast, cross-silo FL involves a small number
(typically ranging from 2 to 100 [37]) of organizational or
institutional participants, each of comparable size. These
participants possess a substantial amount of isolated data
and high-performance local training computing resources.
Unlike cross-device FL, which operates under an undisputed
central authority, all participants in cross-silo FL must col-
laboratively reach a consensus for the establishment of a
central aggregator. This aggregator should be hosted within
a secure and dependable environment. The inherent uncer-
tainty surrounding aggregator deployment intensifies the
concern about aggregator trustworthiness. This paper pri-
marily focuses on the security aspects of model aggregation
in cross-silo FL.
The dependence of FL on a central aggregator to coordi-

nate and consolidate model updates naturally raises several
security concerns. (1) FL participants are required to place
blind trust in the central aggregator. In the presence of rogue
host administrators or breached host systems, adversaries
could gain access to the upstreamed model updates or ma-
nipulate the aggregation process. (2) The concentration of
model updates in a single location may create a single point
of failure. Adversaries only need to breach one system to
obtain complete and intact model updates. (3) There was
a widespread belief that exchanging model updates in FL
communications was “privacy-preserving” and contained
limited or no information about the raw training data. How-
ever, recent research works [8, 20, 22, 51, 82, 84, 88] have
debunked this belief, demonstrating that private attributes
can be inferred, and large fractions of training data can be
reconstructed by exploiting model updates. This challenge to
the privacy promises of FL becomes particularly significant
in the presence of data breaches on aggregation servers.
Researchers have explored various methods to protect

data privacy in FL aggregation, including differential pri-
vacy (DP) [5, 6, 23, 50, 67, 71], secure multi-party computa-
tion (SMC) [9, 53], and homomorphic encryption (HE) [1, 29].
However, these techniques still have their limitations in dif-
ferent aspects. DP-based aggregation protects data privacy
by adding statistical noise to model updates. While effec-
tive, DP can significantly reduce the accuracy of the model
and requires careful hyper-parameter tuning to minimize
the loss [8, 16]. Moreover, FL systems relying solely on DP
may still reveal individual participant models to the central
aggregator, which may no longer be considered trustwor-
thy, and leak the model to participants’ business competi-
tors. While SMC and HE can preserve data confidentiality
in FL aggregation, they remain computationally expensive,
with aggregation overheads significantly outpacing training
time [9, 36].

In recent years, confidential computing (CC) [31, 34, 35,
39, 45, 48, 62], also known as trusted execution environ-
ment (TEE), has been widely integrated into modern CPUs.
CC offers a practical and efficient means to protect data-in-
use in isolated execution domains on untrusted machines
(e.g., hosted in public clouds) and allows users to remotely
verify the execution integrity of workloads. CC has been
extensively explored for protecting data privacy in ML appli-
cations [6, 25, 26, 32, 33, 57, 70]. To leverage CC in FL, one
straightforward approach is to encapsulate the central aggre-
gator within a CC execution environment [52, 54, 60]. This
way, FL parties can upstream model updates into a verified
and protected execution domain through secure channels
with the root-of-trust on CC. However, it is important to note
that CC is not a universal solution to all such challenges. We
have witnessed the emergence of security vulnerabilities and
attack vectors [10, 43, 44, 55, 72–75, 77, 78] along with the
introduction of various CC technologies. Relying solely on a
single line of defense may still leave the system vulnerable
to data leaks in the event of any new security vulnerabilities
disclosed in the future.

Our work is motivated by the following key insights:
(I) Concentrating model updates in a central aggregator

discloses far more information than necessary for FL ag-
gregation algorithms. Most aggregation algorithms involve
coordinate-wise arithmetic operations across model updates.
Thus, partitioning and permuting parameters within a model
update do not affect aggregation results, having no impact
on final model accuracy and convergence rate compared to
traditional FL training. However, from the perspective of
adversaries, obtaining fragmented and shuffled model up-
dates offers no assistance for their malicious intentions, such
as model theft, property inference, or data reconstruction.
Consequently, our design advocates for decentralizing aggre-
gation into multiple instances and internally shuffling each
model update to mitigate the risk of data concentration.
(II) Recent attacks assume strong adversaries, whether

honest-but-curious or with full control of the central aggrega-
tor. These adversaries can passively reconstruct training sam-
ples by solving specific optimization objectives [22, 84, 88], or
actively manipulate model weights [8] and architectures [20]
to accelerate reconstruction and scale to gradients computed
on mini-batched training data. To address this issue, we ad-
vocate for FL participants to be able to verify the authenticity
and integrity of aggregators before joining the training. All
model updates must remain confidential from potential ad-
versaries and should be computedwith validated aggregation
algorithms.

(III) While CC execution environments offer enhanced se-
curity, they may still be vulnerable to unforeseen exploits in
the future. Our design aims to ensure that, even in the worst-
case scenario where all CC-protected systems are breached,
adversaries should not be able to piece together original
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model updates of FL participants based on the data within
the breached aggregators.

In this paper, we present DeTA, a cross-silo FL system ar-
chitecture designed for trustworthy model aggregation and
minimizing data leaks even under scenarios where aggrega-
tors might be breached or under the control of adversaries.
It addresses crucial aspects such as participant model/data
privacy, execution integrity, and computational efficiency. To
achieve these goals, DeTA adopts a decentralized data aggre-
gation strategy, incorporates parameter-level data shuffling,
and employs a two-phase authentication protocol to verify
aggregators running within CC execution environments. By
combining these key techniques, DeTA provides a robust
and resilient defense against data leakage threats.
Decentralized Data Aggregation. To break down infor-
mation concentration, we establish multiple, rather than
one, aggregators during training. At the party’s side, each
model update is disassembled at the parameter granularity
and re-stitched to random partitions designated for different
aggregators. Each aggregator only receives fragmentary frac-
tions of model updates with no knowledge of their model
architectures. Furthermore, users can deploy multiple aggre-
gators to physical servers at different geo-locations. Thus,
we can prevent an aggregator from becoming a single point
of failure (i.e., leaking entire and intact model updates) under
security breaches.
Parameter-level Data Shuffling. As model aggregation
algorithms only involve coordinate-wise operations, we al-
low parties to permute parameters within each already-
partitioned model update to further obfuscate the informa-
tion sent to each aggregator. The permutation changes dy-
namically at each training round. This mechanism ensures
that adversaries cannot decipher the original internal data
order of a model update without obtaining the permutation
keys, which are kept in participant-controlled domains.
Trustworthy Multi-Aggregator Authentication. To sup-
port confidential and tamper-resistant model aggregation,
we leverage hardware-assisted CC execution environments
to isolate and shield all the decentralized aggregators. Dur-
ing the initial stage of FL aggregation bootstrapping, we
employ a two-phase authentication protocol specifically for
new parties to verify aggregators. Each party can verify the
integrity of the aggregation process and its associated hard-
ware root-of-trust before joining the training. Thus, we can
prevent parties from sharing sensitive model updates with
any compromised aggregators.

The key principle underlying DeTA is to establish a com-
prehensive defense-in-depth strategy that not only addresses
known attacks but also anticipates adaptive attackers who
may seek to breach the CC-protected aggregators by exploit-
ing as-yet-unknown vulnerabilities. This multi-layered ap-
proach significantly elevates the barrier for potential attacks

and bolsters the overall security posture of DeTA. In our se-
curity analysis, we demonstrated that the defense-in-depth de-
sign of DeTA can fundamentally prevent existing or adaptive
attackers from reconstructing training data [22, 84, 88]. In
addition, we evaluated DeTA’s performance in training deep
learning models of varying sizes across multiple datasets,
including MNIST, CIFAR-10, and VGG-16 (RVL-CDIP). We used
a range of model aggregation algorithms and FL configura-
tions andmeasured the accuracy/loss and latency.We demon-
strated thatDeTA can achieve the same level of accuracy/loss
and converge at the same rate, with low-performance over-
heads compared to the traditional FL platform as the base-
line.

2 Threat Model
We adopt the same threat model as outlined in prior re-
search on FL data leakage attacks [8, 20, 22, 82, 84, 88]. This
model assumes that adversaries targeting aggregators seek
to gain access to the model updates. Their objectives range
from obtaining participant models for economic gains to ex-
tracting sensitive information, such as private training data.
Adversaries could achieve this either by compromising ag-
gregation servers as external attackers or by possessing the
necessary privileges to access the data as system administra-
tors. These adversaries may vary in their level of aggressive-
ness, ranging from being honest-but-curious [22, 82, 84, 88]
to more actively attempting to manipulate the aggregation
process [8, 20].

It is important to note that our perspective begins with the
premise that FL participants are considered victims. There-
fore, participants themselves are inherently trusted entities
within our threat model. The focus of DeTA is to mitigate
data leakage issues originating from the aggregation side.
This paper does not delve into addressing the misbehavior
of FL parties, such as local data or model poisoning [4, 69],
backdoor attacks [2], collusion among parties, or vulnerabili-
ties and breaches of parties’ systems. The attacks originating
from parties are beyond the scope of this paper, and their
corresponding mitigation strategies have been explored in
an orthogonal line of research [7, 21, 61, 79, 80].

3 Background
To begin, we provide an overview of the model aggregation
algorithms commonly employed in FL, highlighting the key
algorithmic structure that serves as the foundation for decen-
tralization and shuffling of DeTA. Following that, we delve
deeper into the utilization of CC techniques within DeTA.

3.1 Model Aggregation Algorithms
In FL, Federated Stochastic Gradient Descent (FedSGD) [67]
and Federated Averaging (FedAvg) [49] are the most com-
mon model aggregation algorithms for deep neural network

221



EuroSys ’24, April 22–25, 2024, Athens, Greece P. Cheng et al.

(DNN) training, employing iterative merging and synchro-
nizing model updates. Other DNN aggregation methods,
such as Coordinate Median [81], Krum [7], and Paillier-based
Fusion [46, 71], share the similar algorithmic structure with
additional security enhancements. DeTA can support all of
them. Here we describe the algorithms of FedSGD and FedAvg

in detail.
We use \ to denote model parameters and 𝐿 for the loss

function. Each party has its training data/label pairs (𝑥𝑖 , 𝑦𝑖 ).
In FedSGD, the parties choose to share the gradients∇\𝐿\ (𝑥𝑖 , 𝑦𝑖 )
for a data batch to the aggregator. The aggregator computes
the gradient sum of all parties and lets the parties synchro-
nize their model parameters: \ ← \ − [∑𝑁

𝑖=1 ∇\𝐿\ (𝑥𝑖 , 𝑦𝑖 ).
Alternatively in FedAvg, the parties train for several epochs
locally and upload the parameters: \ 𝑖 ← \ 𝑖 − [∇\𝑖𝐿\𝑖 (𝑥𝑖 , 𝑦𝑖 )
to the aggregator. The aggregator computes the weighted
average of model parameters \ ← ∑𝑁

𝑖=1
𝑛𝑖
𝑛
\ 𝑖 , where 𝑛𝑖 is the

size of training data on party 𝑖 and𝑛 is the sum of all𝑛𝑖 . Then,
the aggregator sends the aggregated model parameters back
to the parties for synchronization.

FedAvg and FedSGD are equivalent if we train only one
batch of data in a single FL training round and synchronize
model parameters, because gradients can be computed from
the difference of two successive model parameter uploads.
As FedAvg allows parties to batch multiple SGD iterations
before synchronizing updates, it would be more challenging
for data leakage attacks to succeed.
Algorithmic Structure of Model Aggregation. We ob-
serve that thesemodel aggregation algorithms share a similar
algorithmic structure, i.e., they only involve coordinate-wise
computation. If a model update is represented as a flattened
vector M, these algorithms sum, average, or select the ele-
ments at M[i] from all parties — parameters at a given index
i can be computed with no dependency on the parameters
at any other indices.
This distinctive algorithmic structure of model aggrega-

tion algorithms allows us to perform aggregation on incom-
plete and (internally) out-of-order model updates. The only
requirement is that all parties should contribute a fraction
of each model update with deterministic transformation at
each training round. In contrast, FL data leakage attacks,
particularly their optimization procedures, require a global
view of model updates from parties to progress. The com-
pleteness and data order of model updates play a pivotal role
in uncovering training data. The absence of either of these
factors leads to the failure of such attacks.
This feature enables us to decentralize the aggregation

process. Each party can partition an entire model update into
multiple fragments, distribute them to multiple aggregation
servers, and execute the same model aggregation algorithms
independently across all servers. Furthermore, before aggre-
gation, each partitioned vector can also be shuffled at each
training round, as long as all parties permute in the same

order. Parties can reverse the permutation and merge the ag-
gregated partitions locally when they receive the aggregated
model updates for synchronization.

3.2 Confidential Computing
CC technologies share a common objective: protecting sensi-
tive data and computations on untrusted third-party infras-
tructures. Their primary goal is to shield data-in-use, which
refers to data loaded into main memory, while also mini-
mizing the root-of-trust only to the processors. Major CPU
vendors are competing to integrate CC capabilities into their
processors [31, 34, 35, 39, 45, 48, 62]. Despite variances in
implementation and terminology, these technologies adhere
to fundamental security principles that align with similar
system designs. These principles encompass the introduction
of new execution modes or privilege levels, moving work-
load management functions to vendor-signed firmware or
software, ensuring the secure or measured launch of trusted
components, enforcing strict memory access controls, and
providing memory encryption protection.
In this paper, we choose AMD Secure Encrypted Virtual-

ization (SEV) [39], a virtual machine (VM) based CC solution,
to isolate and shield aggregators. However, our implementa-
tion is not tied to any specific CC technologies and can be
easily adapted with minimal changes to run on other VM-
based CC [31, 34, 35, 45, 62]. SEV depends on AMD Secure
Memory Encryption (SME) to enable runtime memory en-
cryption. Along with the AMD Virtualization (AMD-V) ar-
chitecture, SEV can enforce cryptographic isolation between
confidential virtual machines (CVMs) and their hosting hy-
pervisor. Therefore, SEV can prevent privileged system ad-
ministrators, e.g., at the hypervisor level, from accessing the
data within the encrypted memory of CVMs.
When SEV is enabled, SEV hardware tags all code and

data of a VM with an Address Space Identifier (ASID), which
is associated with a distinct ephemeral Advanced Encryp-
tion Standard (AES) key, called VM Encryption Key (VEK).
The keys are managed by the AMD Secure Processor (SP),
which is a 32-bit ARMCortex-A5 micro-controller integrated
within the AMD System-on-Chip (SoC). Runtime memory
encryption is performed via on-die memory controllers. Each
memory controller has anAES engine that encrypts/decrypts
data when it is written to the main memory or is read into
the SoC. The control over memory page encryption is via
page tables. Physical address bit 47, i.e., C-bit, is used to
mark whether the memory page is encrypted.
Similar to other CC technologies, SEV also provides a re-

mote attestation mechanism for authenticating hardware
platforms and attesting CVMs. The authenticity of the plat-
form is proven with an identity key signed by AMD and
the platform owner. Before provisioning any secrets, CVM
owners should verify both the authenticity of SEV-enabled
hardware and the measurement of Open Virtual Machine
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Figure 1. Federated Learning Life Cycle with DeTA

Firmware (OVMF), which enables Unified Extensible Firmware
Interface (UEFI) support for booting CVMs.

4 System Design
We adhere to the security principle of defense-in-depth to
strengthen the resilience against current and potential adap-
tive attackers. DeTA offers three key security features to
achieve this: (1) partitioning a central aggregator into multi-
ple decentralized instances, each with only a fragmentary
view of the model updates, (2) dynamically shuffling pa-
rameters within each partitioned model update during each
training round, and (3) authenticating tamper-resistant and
trustworthy aggregators and protecting them via SEV. These
security measures work in concert to minimize the attack
surface and make our system resistant to data leakage at-
tacks.
Federated Learning Life Cycle. In Figure 1, we present
a concrete deployment of DeTA to explain the FL training
life cycle step by step. We have 𝑁 parties participating in
the training and we denote the i-th party as 𝑃𝑖 . Instead of
establishing a central aggregator, we launch multiple SEV-
protected aggregators. The j-th aggregator is denoted by 𝐴 𝑗 .
An attestation proxy (AP) is deployed for checking the trust-
worthiness of aggregators with AMD’s remote attestation
service (RAS) (❶). After verifying the certificate chain and
launching measurements of the aggregators, the AP provi-
sions a secret token (❷) to each aggregator as a proof of
trustworthiness. The tokens are injected into the encrypted
memory of SEV CVMs. Each party needs to register with
all aggregators after verifying the tokens to participate in
the training (❸). The parties and the aggregators choose a
model aggregation algorithm, e.g., FedAvg [49] or FedSGD [67],
and determine the number of training rounds. The training

starts with synchronization among all aggregators (❹). In
each training round, each party utilizes its local training
data to generate a new local update, denoted as 𝐿𝑈 [𝑃𝑖 ] .
This update undergoes a series of transformations, includ-
ing partitioning and shuffling. The resulting transformed
update, labeled as 𝑇𝑟𝑎𝑛𝑠 (𝐿𝑈 [𝑃𝑖 ]) , is then uploaded to the
corresponding𝐴 𝑗 (❺). Each aggregator independently aggre-
gates the model update fragments received from all parties
and dispatches the aggregated update back. This aggregated
update is designated as 𝐴𝑈 [𝐴 𝑗 ] if it originates from𝐴 𝑗 . Sub-
sequently, each party reverses the transformation (referred
to as 𝑇𝑟𝑎𝑛𝑠−1 (𝐴𝑈 [𝐴 𝑗 ]) ) by shuffling the parameters back
to their original order and merging the aggregated updates
into its local model (❻). The global training ends once the
pre-determined training criteria (like the number of training
rounds or accuracy) are met.

4.1 Decentralized Data Aggregation
Decentralization has been a focal point in previous research
on distributed learning [3, 41, 42, 76, 83], primarily serving as
a load-balancing technique to mitigate the performance bot-
tleneck associatedwith a central server and to enable scalabil-
ity for a large number of parties. In these approaches, model
updates are directly exchanged among parties in a peer-to-
peer manner, eliminating the need for a central aggregator.
However, it is important to note that these approaches were
not designed to address the issue of data leaks, as a party
could still observe the entire model update exchanged by
another party. Moreover, these decentralized methods intro-
duced additional complexities in establishing mutual trust
among the parties.

Within DeTA, we embrace an alternative decentralization
strategy with a strong emphasis on security. Our approach
involves separating the central aggregator into multiple func-
tional instances, each of which possesses restricted and ob-
fuscated access to the model updates. Achieving this decen-
tralization relies on the utilization of techniques such as
randomized model partitioning and inter-aggregator training
synchronization.
RandomizedModel Partitioning.Weexploit the coordinate-
wise computation of model aggregation algorithms to sup-
port randomized model update partitioning. We split each
model update into disjoint partitions based on the number of
deployed aggregators. Before training starts, we randomly
generate a model mapper for each to-be-trained DNN model.
We allow the parties to choose the proportion of model pa-
rameters for each aggregator. The model mapper is agreed
upon and shared by all the parties that participate in the FL
training.

In Figure 2, the 𝑘 parameters of a local model are mapped
to three aggregators. The colors denote which aggregator a
parameter is mapped to. The model update is disassembled
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and regrouped at the parameter granularity for different ag-
gregators. Once parties download aggregated model updates
from different aggregators, they query the model mapper
again to merge model updates to their original positions
within the local model.

Now each aggregator can only view a fragment of each
model update as a flattened vector. Such fragmented model
updates no longer keep the model architecture information
because unassociated parameters have been removed and
remaining parameters have been squeezed to occupy all
empty slots in sequence.
Inter-Aggregator Training Synchronization. As we de-
ploy multiple decentralized aggregators in DeTA, we need to
maintain communication channels between aggregators for
training synchronization. DeTA randomly selects one of the
aggregators as the initiator node. All the other aggregators
become follower nodes and wait for the commands from the
initiator. At each training round, the initiator first notifies
all parties to start local training and retrieves the model up-
dates for aggregation. Thereafter, it notifies all the follower
aggregator nodes to pull their corresponding model updates,
aggregate them together, and distribute the aggregated up-
dates back to the parties.

4.2 Parameter-level Data Shuffling
To further obfuscate the information transferred from the
parties to the aggregators, we employ a dynamic shuffling
scheme to permute the parameters of each partitioned model
update at every training round. Each permutation is seeded
by the combination of a permutation key (e.g., dispatched
from a trusted key broker service) agreed among all parties
and a dynamically generated training identifier dispatched
at the start of each training round. Thus, the permutation
changes across training rounds, but is deterministic for all
parties. As shown in Figure 2, after receiving an aggregated
model update, each party can reverse shuffle the parameters
within the model update back to their original order.

The dynamic shuffling scheme is also based on the insight
that the data order of parameters in each model update is
irrelevant for model aggregation algorithms, but it is crucial
for optimization procedures used in data leakage attacks.
With dynamic shuffling enabled, even adversaries who have
potentially breached the CC-protected aggregators can only
obtain permuted model updates and the data order dynami-
cally changes at each training round.

Let us assume that each data leakage attack takes time 𝑇 .
The attack cost would be of the order 𝑂 (2 |𝑘𝑒𝑦_𝑠𝑖𝑧𝑒 | ·𝑇 ) with
an exhaustive search for the permutation key. It is worth
noting that the specific numerical values and their statistical
distribution in model weights are irrelevant to the cost of this
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order-recovering attack. The cost is determined by the ef-
fort required to recover the original order of the parameters,
hence the need to exhaust the key space for permutation.
The key size is configurable based on the user’s security
requirement. If the key space is sufficiently large, it becomes
computationally infeasible for adversaries to recover the orig-
inal order of shuffled data, even in the event of compromising
all shielded aggregators.
In particular, we want to emphasize that our parameter-

level shuffling scheme is fundamentally different from the
shuffling scheme of the Encode-Shuffle-Analyze (ESA) [6]
architecture. These two schemes serve different security pur-
poses and operate at different granularity levels. The ESA

shuffler acts as an intermediary between the encoder and an-
alyzer. It reorders an array of model updates collected from
all parties to break data linkage for anonymity. The granu-
larity of ESA’s shuffling is at the level of each model update.
Thus, an aggregator cannot associate model updates with
their owners. However, our data shuffling scheme allows
parties to internally permute parameters within each indi-
vidual (partitioned) model update. Therefore, our shuffling
scheme operates at the granularity of a single parameter (i.e.,
a floating number) within each model update. Our scheme
intends to prevent aggregators from obtaining pristine model
updates.
Applicable Aggregation Algorithms.DeTA’s partitioning
and shufflingmechanisms can apply to a wide range of aggre-
gation algorithms, including most popular algorithms like
FedSGD and FedAvg, as well as Byzantine-robust algorithms
such as Krum [7], Coordinate Median [81], and FLAME [56],
which are specifically designed to mitigate poisoning and
backdoor attacks. For example, FLAME works by detecting
anomalous model updates from malicious parties and clus-
tering model updates to eliminate outliers that indicate data
or model poisoning in parties. It is important to note that
shuffling (permutation of a vector) does not affect the dis-
tance between vectors. With partitioning and shuffling in
DeTA, the original N-dimensional vector is partitioned into
multiple sub-vectors, and shuffling still preserves the dis-
tance used for clustering. The difference is that the original
FLAME clustering is based on the entire vector, whereas with
partitioning enabled, the clustering is conducted indepen-
dently on partitioned vectors within multiple aggregators.
The outliers injected by malicious clients can still be elimi-
nated.

But DeTA’s partitioning and shuffling may not be compat-
ible with aggregation algorithms that require global model
access. For example, FLTrust [11] requires the aggregator to
maintain a reference model to detect deviated model updates.
In these cases, exposing the complete model to the aggrega-
tor may not be desirable if the parties have limited trust in
the aggregation server. However, users can still configure

DeTA to run a single aggregator in a CVM without turn-
ing on partitioning and shuffling, allowing them to strike a
balance between security and usability based on their trust
levels on different components. Ultimately, the appropriate
level of security and usability will vary depending on the
specific needs and circumstances of each user.

4.3 Trustworthy Multi-Aggregator Authentication
The existing remote attestation protocol of SEV is tailored
for the verification of a single CVM. However, the challenge
escalates when aiming to establish trustworthy FL aggrega-
tion with multiple decentralized aggregators. In DeTA, we
have devised a new two-phase authentication protocol that
empowers FL parties to verify all CC-protected aggregators
and build secure channels for protecting their upstreamed
model updates during transit. The chain of trust across these
two phases is securely connected through the use of authen-
tication tokens.
Phase I: Launching Trustworthy Aggregators. In our
setup, each aggregator is containerized and deployed within
an SEV CVM using the Kata Container [40]. We first pause
the CVM launching process and instruct the AMD Secure
Processor to generate an attestation report. This report in-
cludes the certificate chain and the measurement of the
OVMF. The attestation report is then transmitted to an AP,
which retrieves the AMD root certificates from AMD’s RAS
and assumes the responsibility of report verification. It is
worth noting that the AP is established and controlled by
the participating parties, not by the aggregators themselves.
The AP proceeds to verify the certificate chain to authenti-
cate the hardware platform and assess the integrity of the
OVMF firmware. Subsequently, the AP generates a launch
blob with a packaged secret, which encompasses an ECDSA
prime251v1 key. This key acts as an authentication token
representing a trusted aggregator and is employed in Phase
II for the authentication of aggregators. The hypervisor then
injects this secret into the CVM’s physical memory space,
and the paused launching process is resumed to establish a
trustworthy aggregator.
Phase II: Multi-Aggregator Authentication. Parties par-
ticipating in FL must ensure that they are interacting with
trustworthy aggregators with SEV protection. To enable ag-
gregator authentication, in Phase I, the AP provisions an
ECDSA key as an authentication token during CVM deploy-
ment. This token is used for signing challenge requests and
thus serves to identify a trustworthy aggregator. Before par-
ticipating in FL training, a party first verifies an aggregator
by engaging in a challenge-response protocol. The party
sends a randomly generated nonce to the aggregator. The
aggregator digitally signs the nonce using its corresponding
ECDSA key and then returns the signed nonce to the request-
ing party. The party verifies that the nonce is signed with the
corresponding ECDSA key. If the verification is successful,
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the party then proceeds to register with the aggregator to
participate in FL training. This process is repeated for all
aggregators. After registration, end-to-end secure channels
can be established to protect communications between ag-
gregators and parties for exchanging model updates. We
enable Transport Layer Security (TLS) to protect the commu-
nication between a party and an aggregator. Thus, all model
updates are protected both within CVMs and in transit.
This two-phase authentication protocol can effectively

prevent the collusion between aggregators and parties. First,
malicious or tampered aggregators (e.g., with the collusion
code) cannot be launched as they will fail the attestation
for integrity verification. Second, all parties must undergo
authentication and registration to join the training, further
minimizing the risk of deploying impersonated parties con-
trolled by aggregators.

5 Implementation
We developed DeTA by extending the IBM Framework for
Federated Learning (FFL) [47] to support trustworthy ag-
gregation, decentralized multi-aggregators with model par-
titioning, and dynamic internal permutation of model up-
dates. We used the AMD EPYC 7642 (ROME) processor run-
ning SEV API Version 0.22 [64]. We extended QEMU with the
patch [18] to support AMD SEV LAUNCH_SECRET and ex-
tended Kata Runtime to provide remote attestation via client-
side gRPC [24] communication with the AP server. Finally,
we implemented our AP server as a gRPC service using a
modified version of the AMD SEV-Tool [66] to support CVM
owners’ tasks, e.g., attesting the AMD SEV-enabled hard-
ware platform, verifying the OVMF launch measurement,
and generating the launch blob. We added 2631 LOC to the
FFL, 3043 LOC to the AP server, and 1037 LOC to the Kata
Runtime.
Our current prototype is constructed using IBM FFL, but

DeTA’s design can be adopted by any FL framework em-
ploying model update aggregation, such as Flower [19] and
FedML [17]. Moreover, our prototype can readily integrate
with other CC solutions, such as Intel Trust Domain Exten-
sions (TDX) [12, 35], and extend to leverage NVIDIA Con-
fidential Computing [14] in H100 Tensor Core GPU. The
only necessary adjustment is to modify the AP server to
accommodate additional CC attestation.
Open Source Status. The shuffling component of DeTA has
already been integrated as an aggregation algorithm in the
IBM FFL1. The decentralization and TEE components are in
the process of being released as an independent open-source
project.

1
https://github.com/IBM/federated-learning-lib

6 Security Analysis
In our security analysis, we subject DeTA to a worst-case
scenario, wherein we assume that attackers have successfully
breached the CC-protected aggregators and gained access
to all the model updates upstreamed by the FL parties. Our
objective is to assess whether adversaries can reconstruct
the training data from these model updates, which have
undergone transformations involving model partitioning
and parameter shuffling.

We evaluated the effectiveness of DeTA against three FL
data leakage attacks that can reconstruct training data based
on model updates: Deep Leakage from Gradients (DLG) [88],
Improved DLG (iDLG) [84], and Inverting Gradients (IG) [22].
We used the implementations from their public repositories
for our experiments. We evaluated each attack in the follow-
ing two configurations:
In the first configuration, we evaluated each attack with

only model partitioning enabled, varying the partition factor
by 40%, thus lowering the percentage of model updates ac-
cessible to the attack. For example, a partition factor of 0.6
means the attack has access to 60% of parameters in a model
update.
In the second configuration, we enabled parameter shuf-

fling together with model partitioning and re-evaluated the
model, again varying the partition factor by 40%. For ex-
ample, a partition factor of 0.6 means the attack has access
to 60% of parameters in a model update, in addition, the
parameters within this 60% partition are shuffled.
The current design of DeTA does not allow aggregators

to maintain a global model, thus adversaries do not know
model architectures. Adversaries can neither retrieve the
unmodified model update associated with an input sample
nor query the model for the dummy input’s current loss
gradients. As such, in a real deployment of DeTA, these at-
tacks would not succeed as they lack both these two critical
components. However, to analyze the effects of the security
measures of DeTA, we relaxed the constraints and allowed
adversaries to query the complete, unperturbed model as a
black box. Therefore, we allowed the attacks to compute the
dummy inputs’ loss gradients, but the original inputs’ loss
gradients were still transformed by DeTA. In this stronger
attack scenario, we demonstrate that DeTA remains effec-
tive and prevents the attacks from leaking information by
reconstructing data from model updates.

6.1 Data Reconstruction Attacks
Here we briefly describe the algorithms of these reconstruc-
tion attacks. In DLG [88], the attack reconstructs a training
sample 𝑥 based on the shared gradient updates. It randomly
initializes a dummy input 𝑥 ′ and a label 𝑦′, which are fed
into the model to compute the loss gradients ∇\L\ (𝑥 ′, 𝑦′)
with regard to the model weight \ . Then, the attack uses an
L-BGFS solver to minimize the following cost function to
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reconstruct 𝑥 :

argmin
𝑥 ′,𝑦′

| |∇\L\ (𝑥 ′, 𝑦′) − ∇\L\ (𝑥,𝑦) | |2

As the differentiation requires second-order derivatives, the
attack only works on models that are twice differentiable.
Although the DLG attack was proven effective, the reconstruc-
tions and labels generated after optimizationwere sometimes
of low quality and incorrect respectively. In the following
iDLG [84] attack, the authors demonstrated that the signs of
the loss gradients with respect to the correct label are always
opposite to the signs of the other labels. Thus, the ground
truth labels can be inferred based on the model updates to
improve reconstruction quality.

IG [22] makes two major modifications to DLG and iDLG.
First, the authors asserted that it is not the magnitudes of
the gradients that are important, but rather the directions
of the gradients. Based on this reasoning, they used a co-
sine distance cost function, which encouraged the attack to
find reconstructions that resulted in the same changes in
gradients’ directions. Their new cost function is:

argmin
𝑥 ′∈[0,1]𝑛

1 − ⟨∇\L\ (𝑥 ′, 𝑦),∇\L\ (𝑥,𝑦)⟩
| |∇\L\ (𝑥 ′, 𝑦) | | | |∇\L\ (𝑥,𝑦) | |

+ 𝛼𝑇𝑉 (𝑥 ′)

In this cost function, they (1) constrained their search space
to [0, 1], (2) added total variation (TV) as an image prior, and
(3) minimized their cost function based on the signs of the
loss gradients and the ADAM optimizer. This modification
was inspired by adversarial attacks on DNNs, which used a
similar technique to generate adversarial inputs [68].
We can see that DLG, iDLG, and IG attacks all require a

complete, in-order view of either the model or the loss gradi-
ents to minimize their respective cost functions. Otherwise,
∇\L\ (𝑥,𝑦) cannot be accurately measured or aligned with
respect to the reconstructed input 𝑥 ′.

6.2 DLG and iDLG Results
We used a randomly initialized LeNet model for evaluation
as done in DLG and iDLG and evaluated both attacks using
1000 randomly selected inputs from the CIFAR-100 dataset.
We ran each attack for 300 iterations. The results of DeTA
against DLG and iDLG are reported in Tables 1 and 2.
We partitioned the results into four ranges based on the

mean squared error (MSE) between the original and the
reconstructed images. MSE is the metric adopted in DLG

and iDLG for measuring the quality of reconstructed im-
ages in CIFAR-100. Through visual inspection, an MSE below
1.0 × 10−3 compared to the original images resulted in rec-
ognizable reconstructions. We highlight this threshold in
red in Tables 1 and 2. Without DeTA in place, DLG and iDLG,
resulted in generating 66.6% and 83.7% recognizable recon-
structions respectively without model partitioning. These
results are used as the baseline and highlighted in the un-
derlined columns. For these columns, the partition factor is

100% 
Partition

60% 
Partition

20% 
Partition

100% 
Partition

+Permutation

60% 
Partition

+Permutation

20% 
Partition

+Permutation

Ground 
Truth

DLG
iter=300

iDLG
iter=300

Figure 3. Reconstruction Examples of DLG and iDLG with
Model Partitioning and Parameter Shuffling

Table 1. Comparison of Fidelity Threshold (MSE) for DLG
with Model Partitioning and Parameter Shuffling

DLG Partition Partition+Shuffle
MSE Full★ 0.6† 0.2† Full‡ 0.6‡ 0.2‡

[0, 1 × 10−3) 66.6% 0% 0% 0% 0% 0%
[1 × 10−3, 1) 1.3% 0% 0% 0% 0% 0%
[1, 1 × 102) 8.1% 38.9% 20.5% 0% 0% 0.2%
≥ 1 × 102 24.0% 61.1% 79.5% 100% 100% 99.8%
★ Without DeTA (with access to each full model update), 66.6% of
reconstructions generated by DLG are recognizable (𝑀𝑆𝐸 < 1 × 10−3).
†After enabling partitioning (with access to 60% and 20% of each model
update), all reconstructions are not recognizable (𝑀𝑆𝐸 > 1).
‡After combining shuffling with partitioning (with access to 100%, 60%,
and 20% of each model update), all reconstructions are not recognizable
(𝑀𝑆𝐸 > 1 × 102).

1 (denoted as “Full”). It means the attack had access to an
entire model update.
However, as soon as model partitioning is enabled, the

reconstruction quality drops significantly. Due to model par-
titioning, irrespective of whether the attacked aggregator got
a 0.6 or 0.2 partition (60% or 20% of the model update), both
attacks’ estimates of the original gradients are increasingly
inaccurate as fewer of the original model’s updates are avail-
able. In turn, both attacks cannot correctly minimize the cost
function, which we observed during the attack process. With
partitioning, neither attack can generate any recognizable
reconstructions.
Enabling parameter shuffling in addition to model parti-

tioning adds an additional layer of protection against recon-
struction attacks as evidenced by the increased MSE of the
reconstructions in Tables 1 and 2 — almost 100% of recon-
structed images fall within the highest MSE bucket. Even
with all of the model updates, neither attack can generate
a recognizable reconstruction as shuffling of the model pa-
rameters prevents the attacks from correctly aligning their
gradient estimations.

We present the reconstructions generated by DLG and iDLG

attacks in the first and second rows of Figure 3. The first col-
umn shows the original images. The second column presents
the reconstructed images (after 300 iterations) when the
entire and in-order model updates (100% partition) were pro-
vided to the DLG and iDLG attacks. These results are used
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Table 2. Comparison of Fidelity Threshold (MSE) for iDLG
with Model Partitioning and Parameter Shuffling

iDLG Partition Partition+Shuffle
MSE Full★ 0.6† 0.2† Full‡ 0.6‡ 0.2‡
[0, 1 × 10−3) 83.7% 0% 0% 0% 0% 0%
[1 × 10−3, 1) 1.5% 0% 0% 0% 0% 0%
[1, 1 × 102) 6.6% 66.5% 18.3% 0.2% 0.2% 0.7%
≥ 1 × 102 8.2% 33.5% 81.7% 99.8% 99.8% 99.3%
★ Without DeTA (with access to each full model update), 83.7% of
reconstructions generated by iDLG are recognizable (𝑀𝑆𝐸 < 1 × 10−3).
† After enabling partitioning (with access to 60% and 20% of each model
update), all reconstructions are not recognizable (𝑀𝑆𝐸 > 1).
‡ After combining shuffling with partitioning (with access to 100%, 60%,
and 20% of each model update), all reconstructions are not recognizable
(𝑀𝑆𝐸 > 1 × 102).

Table 3. Comparison of Final Cosine Distance for IG with
Model Partitioning and Parameter Shuffling

IG Partition Partition+Shuffle
Cosine Distance Full★ 0.6† 0.2† Full‡ 0.6‡ 0.2‡
[0, 0.01) 100% 0% 0% 0% 0% 0%
[0.01, 0.2) 0% 0% 0% 0% 0% 0%
[0.2, 0.4) 0% 100% 0% 0% 0% 0%
[0.4, 0.6) 0% 0% 98% 0% 0% 0%
[0.6, 0.8) 0% 0% 2% 0% 0% 0%
[0.8, 1] 0% 0% 0% 100% 100% 100%
★Without DeTA (with access to each full model update), all the cosine
distances of IG reconstructions fall into the range of [0, 0.01), indicating
that IG’s optimization can converge.
† After enabling partitioning (with access to 60% and 20% of each model
update), all the cosine distances > 0.2, indicating that IG’s optimization
cannot converge.
‡ After combining shuffling with partitioning (with access to 100%, 60%,
and 20% of each model update), all the cosine distances > 0.8, indicating
that IG’s optimization cannot converge.

as the baseline for comparison. In columns 3-7, we present
the reconstructions with different combinations of partition-
ing and shuffling enabled. The visual results are consistent
with the MSE data in Tables 1 and 2. No recognizable recon-
structions can be generated with partitioning and shuffling
enabled.

6.3 IG Results
We used a randomly initialized ResNet-18 model for eval-
uation as done in IG and evaluated using 50 randomly se-
lected inputs from the ImageNet dataset. We ran the attack
for 24, 000 iterations with two random restarts.
MSE is no longer an accurate metric for measuring image

similarity for large-sized data examples of ImageNet. Instead,
we measured the cosine distance, i.e., the cost function of
IG, to show that DeTA effectively hinders the optimization
procedure. We partitioned the cosine distance (bounded in

Full
Partition

60% 
Partition

20% 
Partition

Full
Partition

+ Shuffling

60% 
Partition

+ Shuffling

20% 
Partition

+ Shuffling
Ground Truth

Figure 4. Reconstruction Examples of IG with Model Parti-
tioning and Parameter Shuffling

[0, 1]) into six ranges and present the results in Table 3. With-
out DeTA in place, the cosine distance of IG’s cost function
is always smaller than 0.01 with a partition factor of 1 (i.e.,
no model partitioning and denoted as “Full”). These results
are used as the baseline and highlighted in the column with
the underlined values. With DeTA enabled, IG can no longer
correctly minimize the cost function. The cosine distance
values in the optimization procedures are stuck at a level
significantly larger than 0.01. For example, with a 0.6 par-
tition factor and no shuffling, all cosine distance values are
in the range of [0.2, 0.4). With shuffling enabled, the cosine
distance further increased to the range of [0.8, 1].
In Figure 4, we display five ImageNet examples used in

our IG reconstruction experiments. The first column shows
the original images. The second column presents the recon-
structed images (after 24, 000 iterations) when the entire
model updates were provided to the IG attack. These re-
sults are used as the baseline for comparison. In the third
through seventh columns, we present the reconstructions
with different combinations of partitioning and shuffling
enabled. Compared to the baseline, none of the reconstruc-
tions contain recognizable information related to the ground
truth examples. Without the complete, unperturbed model
updates, IG is unable to minimize its cost function.

7 Performance Evaluation
We evaluated the performance of DeTA with two metrics.
First, we measured the loss/accuracy of the models generated
at each training round. It demonstrates that the convergence
rate of DeTA is aligned with the baseline system and DeTA
does not lead to model accuracy degradation. Second, we
measured the latency of FL training. The latency of model
training refers to the total time to finish a specified number
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of training rounds. We recorded the time after finishing each
training round at the aggregator. The latency results reflect
the performance overhead incurred by the security features
(i.e., decentralized aggregation, parameter shuffling, and CC
protection) added in DeTA. Our evaluation covers a spec-
trum of cross-silo FL training applications from three aspects:
(1) adaptability to different FL model aggregation algorithms,
(2) performance comparisons with different numbers of par-
ticipating parties, and (3) support for larger DNN models
with non-IID training data distribution.

In our evaluation, we set up three SEV-protected aggrega-
tors. Each aggregator ran on amachinewith AMDEPYC 7642
CPU. Each party ran on a machine with an Intel Xeon E5-
2690 CPU, one NVIDIA Tesla P100 GPU, and 120 GB DRAM.
The baseline for comparison is IBM FFL with one central
aggregator. The party’s configurations, model architectures,
and hyper-parameter settings are the same for DeTA and
FFL.

7.1 Performance with Different Model Aggregation
Algorithms

As indicated in the DeTA’s design, we support model aggre-
gation algorithms with coordinate-wise arithmetic opera-
tions. We evaluated DeTA respectively with three model ag-
gregation algorithms, i.e., Iterative Averaging, Coordinate
Median [81], and Paillier [46, 71], with the MNIST dataset. It-
erative Averaging is the core algorithm supporting FedAvg

and FedSGD. It sends queries to all registered parties at each
training round to collect information, e.g., model updates or
gradients, averages the updates, and broadcasts the fused
results to all parties. Coordinate Median is a model aggrega-
tion algorithm that selects a coordinate-wise median from
collected responses to tolerate Byzantine failures of adversar-
ial parties. The Paillier-based Fusion algorithm supports
aggregation with Additively Homomorphic Encryption [58].
We trained deep learning models on the MNIST dataset with
ten training rounds for Iterative Averaging, Coordinate Me-

dian, and three rounds for Paillier. Each round has three
local epochs.

MNIST contains 60, 000 examples in the training set. We
randomly partitioned the training set into four equal sets
for four parties. Each party has 15, 000 examples for local
training. The trained model is a convolutional neural net-
work (ConvNet) with eight layers.
Accuracy/Loss and Convergence Rate. We present the
model loss and accuracy at each training round in Figures 5a,
5b, and 5c. The horizontal axes are the number of training
rounds. The left vertical axes show the loss and the right
vertical axes present the model accuracy. The loss/accuracy
results of DeTA and FFL have the same patterns for all three
model aggregation algorithms. DeTA and FFL converge at
the same rate on MNIST after one training round. The final

models achieve the same accuracy level (above 98%) for both
DeTA and FFL.
Training Latency. We present the training latency data of
DeTA and FFL in Figures 5d, 5e, and 5f. The vertical axes
are the accumulated time spent to finish that training round.
We observed that for Iterative Averaging, DeTA used 75.83
seconds to finish the 10-round training and FFL used 54.32
seconds. Compared to the baseline FFL system, the added
security features in DeTA incurred additional 0.40× latency
for training the MNIST model. Similarly for Coordinate Me-

dian, DeTA incurred additional 0.45× in latency. Due to
the heavyweight additively homomorphic encryption opera-
tions, training a model on MNISTwith Paillier-based Fusion

itself (without DeTA) for only three rounds took 2000+ sec-
onds (∼100× slower compared to Iterative Averaging and
Coordinate Median). However, DeTA finished training with
0.04× improvement in latency compared to FFL. The reason
is that the dominant performance factors of Paillier aggre-
gation are the encryption/decryption operations. However,
as the models are partitioned in DeTA for multiple decentral-
ized aggregators, the Paillier encryption/decryption and
aggregation are accelerated — computed in parallel by oper-
ating on smaller model partitions both on the aggregators
and on the parties.

7.2 Performance with Different Numbers of Parties
In this experiment, we aimed to understand the performance
effects of involving different numbers of parties. We trained
a ConvNet with 23 layers on CIFAR-10 with four and eight
parties. We randomly partition the training set into equal
sets for the parties. Each party has 10, 000 examples for FL
training. We trained this model with 30 training rounds, with
each round consisting of one local epoch.
Accuracy/Loss and Convergence Rate. We present the
model accuracy and loss at each training round in Figure 6a.
The patterns for the loss and accuracy are similar for DeTA
and FFL with both four parties and eight parties. It indicates
that the models converge at a similar rate with different
numbers of parties. The accuracy results of the final model
trained with FFL are 76.99% (four parties) and 76.43% (eight
parties). The final model accuracy results with DeTA are
79.93% (four parties) and 81.41% (eight parties).
Training Latency. We present the training latency data of
DeTA and FFL in Figure 6b. In the four parties scenario, it
tookDeTA 182.91 seconds to finish 30 rounds of training and
FFL 157.41 seconds. Our added features incurred additional
0.16× in latency for training the CIFAR-10model. In the eight
parties scenario, it took DeTA 498.68 seconds to finish 30
rounds of training and FFL 477.34 seconds. The latency only
increased by 0.04×. We also find that adding more parties
increases the latency for both FFL and DeTA at the same
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(a) Loss/Accuracy: Iterative Averaging
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(b) Loss/Accuracy: Coordinate Median
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(c) Loss/Accuracy: Paillier
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Figure 5.MNIST Loss/Accuracy/Latency Comparison Between DeTA and FFL (IID with Four Parties)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
cc

ur
ac

y

L
os

s

Training Round

DETA-Loss-4P FFL-Loss-4P DETA-Loss-8P
FFL-Loss-8P DETA-Accuracy-4P FFL-Accuracy-4P
DETA-Accuracy-8P FFL-Accuracy-8P

(a) Loss/Accuracy (4 Parties vs. 8 Parties)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L
at

en
cy

 (S
ec

on
ds

)

Training Round

DETA-4P FFL-4P DETA-8P FFL-8P

8 Parties

4 Parties

(b) Latency (4 Parties vs. 8 Parties)

Figure 6. CIFAR10 Loss/Accuracy/Latency Comparison Between DeTA and FFL (IID with Four/Eight Parties)

pace. The security features of DeTA do not lead to additional
latency with regard to more parties.

7.3 Training with Non-IID Training Data
In this experiment, we measured the performance of train-
ing a larger, more complex deep learning model with non-
IID training data distribution. We used a pre-trained VGG-16

model on the ImageNet to train a document classifier on the

RVL-CDIP [30] dataset with 16 classes. For transfer learning
with RVL-CDIP classification, we replaced the last three fully
connected layers of VGG-16 due to differences in the num-
ber of prediction classes. The RVL-CDIP dataset has 320, 000
training images and 40, 000 test images. We partitioned the
training data based on the non-IID 90-10 skew data split for
eight parties. Each party has approximately 40, 000 training
examples with skew distribution among different classes,
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i.e., the two dominant classes contain 90% of training data,
while the remaining 14 classes have 10%. We trained deep
learning models with 30 training rounds. Each round has
one epoch. As RVL-CDIP dataset is not officially supported in
FFL, we simulated the FFL implementation for performance
comparison.
Accuracy/Loss and Convergence Rate. We present the
model accuracy and loss at each training round in Figure 7a.
Similarly, the models converge at a similar rate with DeTA
and FFL. The accuracy result of the final model trained with
DeTA is 83.50% and 86.19% with simulated FFL.
Training Latency. We present the training latency data of
DeTA and simulated FFL in Figure 7b. It took DeTA 2.85
hours and FFL 2.46 hours to finish 30 rounds of training. Our
added security features in DeTA only incurred additional
0.16× in latency for training the RVL-CDIP model.

8 Related Work
We give an overview of the security defenses against FL data
leakage attacks and analyze their pros and cons from the
perspectives of security and utility trade-offs. We compare
DeTA with them to demonstrate our contributions.

8.1 Differential Privacy
In the ML setting, DP can be used to apply perturbations for
mitigating information leakage. Compared to cryptographic
schemes, DP is more computationally efficient at the cost
of a certain utility loss due to the added noise. Centralized
differential privacy (CDP) is typically conducted under the
assumption of a trusted central server. CDP [23, 50] can
achieve an acceptable balance between privacy and accu-
racy, but it does not fit a threat model where the aggregation
server might be honest-but-curious, malicious, or compro-
mised. To remove the trusted central server assumption in

the threat model, local differential privacy (LDP) [5, 67] lets
each client conduct differentially private transformations of
their private data before sharing them with the aggregator.
However, achieving LDP comes at the cost of utility loss
as every participant must add enough noise to ensure DP
in isolation. All forms of DP require fresh hyper-parameter
tuning, i.e., batch size and learning rate. With DP, hyper-
parameters are different for various values of the privacy
parameter 𝜖 . This requires several FL jobs to be run just to
find good hyper-parameters, which can be problematic as
one is trying to coordinate different competing entities.
Due to conflicting threat models, the decentralized data

aggregationmodel inDeTA is incompatible with CDP, which
requires a central aggregator in FL training. However, we
can still protect the aggregation within a CC environment
to strengthen CDP. DeTA can be seamlessly integrated with
LDP as the LDP’s perturbations only apply to model updates
on the parties’ devices.

8.2 Cryptographic Schemes
Homomorphic encryption allows arithmetic operations on ci-
phertexts without decryption. Aono et al. [1] used additively
HE to protect the privacy of gradients to prevent information
leakage. Hardy et al. [29] encrypted vertically partitioned
data with an additively HE and learned a linear classifier
in the FL setting. One downside of HE-based schemes is
that since all parties have to encrypt the model with the
same public key for aggregation over encrypted models to
work, one needs a trusted third party to generate that key
pair. Further, aggregation over HE-encrypted models has
high computational and communication costs, since homo-
morphically encrypting a model increases its size around 32
times [27].
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Secure multi-party computation allows different parties
to compute a joint function without revealing their inputs to
each other and has been widely researched in collaborative
analytics and multi-party learning [9, 9, 53, 59, 71, 86, 87]. Se-
cureML [53] conducted privacy-preserving learning via SMC.
It required data owners to encrypt and secretly share their
data among two non-colluding servers in the initial setup.
Helen [87] is a coopetitive system using maliciously SMC
for training linear models with a strong adversarial setting
where each party could only trust itself. Bonawitz et al. [9]
proposed a secure aggregation protocol for aggregating indi-
vidual model updates via SMC. The servers can only learn
the information from the aggregated results. It is also ro-
bust when clients frequently drop in the FL’s cross-device
setting. However, SMC is also computationally expensive
and has scalability issues. Bonawitz et al. [9] illustrated this
theoretically with several computation and communication
costs that grow quadratically with the number of parties and
empirically in their experiments.

Our work in DeTA primarily uses model partition and pa-
rameter permutation — inexpensive when compared to SMC
protocols. Further, many SMC protocols do not permit asyn-
chronous training because they require cohort formation
and active transmission over multiple rounds. Asynchro-
nous training is prevalent in FL because participants often
have other competing private workloads, variations in data
availability, and differences in compute hardware available
for training.

8.3 Confidential Computing
Confidential computing techniques offer users the ability to
delegate their computations to remote third-party servers
that have root-of-trust established at the CPU package level.
These techniques hold significant appeal for collaborative
machine learning scenarios, which often involve vast quanti-
ties of privacy-sensitive training data, multiple parties with
varying levels of trust, and stringent data protection regu-
lations. CC serves as a dependable execution environment
that can isolate and manage machine learning processes
while also reducing the reliance on costly cryptographic
primitives. For example, CC has been employed to support
secure model inference [25, 70], privacy-preserving multi-
party machine learning [26, 32, 33, 52, 57], and analytics
on sensitive data [6, 13, 63, 85]. More Recently, VM-based
CC solutions, e.g., AMD SEV [38, 39, 65], Intel TDX [12, 35],
IBM Secure Execution [34], Power PEF [31], Arm CCA [45],
RISC-V CoVE [62], have been developed to facilitate the
deployment of unmodified applications within protected
confidential virtual machines.

While CC provides valuable security measures for collab-
orative machine learning, it is not a one-size-fits-all solu-
tion to address all trust issues. Different CC technologies
come with their own functional and security constraints.
Moreover, CC systems may still be vulnerable to emerging

security threats [10, 43, 44, 55, 72–75, 77, 78]. A single flaw
could potentially compromise the entire foundation of a sup-
posedly trustworthy system. Therefore, when evaluating a
CC-protected system, it is imperative to discern the distinct
security properties of various CC implementations and also
consider the worst-case scenario in the event of CC failures.

Much like other research endeavors, our work also lever-
ages CC technologies to protect aggregation as a first line
of defense against data leakage. However, by integrating CC
protection with techniques like model partitioning and pa-
rameter permutation, we can ensure that even in the event
of a breach in CC environments, attackers remain unable to
exploit leaked model updates for malicious purposes.

9 Conclusion
Confidential computing has emerged as a practical and effi-
cient approach for establishing trustworthiness in federated
learning aggregation. However, the adoption of CC has also
brought to light a growing number of security vulnerabilities.
Relying solely on this single layer of defense is no longer
sufficient to ensure system resilience against data leaks. In
response to these emerging challenges, we have reexamined
the security model for FL aggregation. This reassessment has
led to the development of DeTA, a new cross-silo FL architec-
ture that incorporates decentralized aggregation, parameter
shuffling, and robust multi-aggregator authentication. The
primary objectives of DeTA are to break data concentration
and minimize data leakage surface within FL aggregation.
DeTA enables automated model partitioning and parameter
shuffling for FL participants and facilitates the deployment
of CC-protected aggregators in a decentralized environment
with no utility loss and low-performance overheads. Most im-
portantly, DeTA has proven to be highly effective in mitigat-
ing FL data leaks, even when confronted with the worst-case
scenario involving breaches of CC execution environments.
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