
LEAPS: Detecting Camouflaged Attacks with
Statistical Learning Guided by Program Analysis

Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, Dongyan Xu
Department of Computer Science and CERIAS, Purdue University

West Lafayette, IN, USA, 47907-2107

{gu16, kpei, wang868, lsi, xyzhang, dxu}@cs.purdue.edu

Abstract—Currently cyberinfrastructures are facing increas-
ingly stealthy attacks that implant malicious payloads under the
cover of benign programs. Existing attack detection approaches
based on statistical learning methods may generate misleading
decision boundaries when processing noisy data with such a
mixture of benign and malicious behaviors. On the other hand,
attack detection based on formal program analysis may lack
completeness or adaptivity when modeling attack behaviors.
In light of these limitations, we have developed LEAPS, an
attack detection system based on supervised statistical learning
to classify benign and malicious system events. Furthermore,
we leverage control flow graphs inferred from the system event
logs to enable automatic pruning of the training data, which
leads to a more accurate classification model when applied to
the testing data. Our extensive evaluation shows that, compared
with pure statistical learning models, LEAPS achieves consistently
higher accuracy when detecting real-world camouflaged attacks
with benign program cover-up.

Keywords—Attack Detection; Statistical Learning; Program
Analysis;

I. INTRODUCTION

Enterprise cyberinfrastructures are facing more severe cy-
ber threats powered by sophisticated attack techniques. Such
attacks are driven by financial interests for divulging privacy
records, collecting competitor’s intelligence, or concealing
unauthorized system accesses. They may exploit system vul-
nerabilities or leverage social engineering (i.e., psychological
manipulation of innocent people to perform harmful operations
unintentionally) to initiate attacks, leaving only inconspicuous
footprints. More recently, instead of only launching one-time
attacks, adversaries tend to implant stealthy and persistent
backdoors — which parasitize in the memory space of some
long-running benign applications or embed in the application’s
binaries — to facilitate future security penetrations. Based on
the cloaking properties of such attacks, in this paper we call
them camouflaged attacks.

Recent research efforts on host-based attack detection
can be divided into two categories: program analysis based
methods and statistical learning based methods.

Attack Detection Based on Program Analysis: Some ap-
proaches [1]–[5] perform static analysis on applications (as-
suming the availability of source or executable code) to obtain
precise program execution models. But the non-trivial over-
head, complexity of accurate binary analysis, and intentional
obfuscation limit their applicability to real-world applica-
tions/environments. Other detection systems [6]–[8] perform
dynamic analysis in a training phase and build deterministic

program behavior models by profiling application-system in-
teractions.

Attack Detection Based on Statistical Learning: Instead of
achieving precise program models like in the former category,
detection systems in this category utilize statistical learning
techniques to build benign/malicious classification models. For
example, in the work of [9], [10], association and frequency
rules are learned from training data for future detection. In
other systems [11], [12], histogram-based methods are applied
to profiling normal program behavior. A more sophisticated
hidden Markov model (HMM) is adopted in [13], [14] for in-
trusion detection. More recently, the works in [15]–[18] utilize
Support Vector Machine (SVM) to build binary classification
models. One major advantage of these statistical learning based
systems is that they are robust in dealing with incomplete
data, and thus can usually achieve better classification results
compared with program analysis based approaches.

We argue that, for the detection of camouflaged attacks,
current attack detection systems may encounter difficulties
in effectively discriminating between benign and malicious
behavior. The main reason is that the extraction of pure
malicious behavior in a raw dataset (e.g., system execution
logs) is difficult. For trojaned applications or runtime ap-
plication exploitations belonging to camouflaged attacks, the
malicious payload no longer executes independently. Instead,
it runs concurrently with the benign code of the application,
which generates a training dataset with interleaved benign
and malicious behaviors. Such noisy training datasets may
eventually lead to a biased classification boundary.

In light of the limitation above, we have developed LEAPS1

to integrate the capabilities of the two camps. LEAPS is in-
spired by a recently proposed vision called “Learn-2-Reason”
[19], which promotes mutual enhancement between statistical
learning and formal analysis methods. Specifically, LEAPS
leverages program execution analysis to refine its statistical
learning model, boosting its detection accuracy.

Taking a host-based system event log as input, we adopt the
supervised statistical learning model to classify benign and ma-
licious events. The classification model is built upon system-
level features extracted from the log, such as system event,
libraries, and functions. The effectiveness of this approach is
based on the key observation that the system-level behavior
of anomalous execution, triggered by the malicious code, is
different from the system-level behavior of benign code.

1LEAPS stands for Learning Enhanced with Analysis of Program Support

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-8629-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DSN.2015.34

57

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-8629-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DSN.2015.34

57

Then, to address the noisy training dataset problem in
detecting camouflaged attacks, we use the control flow graph
(CFG) of each benign application (which may not be complete)
as the oracle to guide the training. From our observation,
benign and malicious instructions by nature cluster separately
in the memory space. For each data point in the noisy training
dataset, we measure its distance to the benign CFG and
assign a corresponding weight, which indicates that outlying
data points are more likely to be events triggered by the
malicious payload. Although injecting malicious code near
benign code is not impossible (e.g., injecting malicious code
in free alignment areas between procedures), it is usually not
used in real-world attacks because such limited space greatly
restricts the functionality of injected code. Typical attacks
choose to allocate extra memory for malicious payloads and
then hijack benign control flows.

Taking the assigned weights into consideration, we build a
Weighted Support Vector Machine (WSVM) classifier to detect
benign and malicious behaviors. Deriving a complete and
accurate CFG using static analysis on a binary is a well-known
challenge due to binary obfuscation and software protection
mechanism. In LEAPS, we avoid static program analysis by
dynamically inferring the CFG of each application — based
on the stack walk trace in the system event log. We note that
such a CFG is by no means complete, but it presents a general
execution pattern of the application, which is sufficient for our
distance approximation.

This paper makes the following contributions:

• A better statistical learning model for detecting cam-
ouflaged attacks, guided by CFGs derived from pro-
gram trace analysis. This model is especially suit-
able for noisy training datasets mixed with be-
nign/malicious events.

• An algorithm for CFG inference only based on the
stack walk trace in the system event log, without
requiring static program analysis or program instru-
mentation.

• Extensive evaluation of LEAPS for the detection of
camouflaged attacks with diverse combinations of
applications, malicious payloads, and attack methods,
demonstrating effectiveness of LEAPS.

We organize the rest of this paper as follows. Section II
presents the threat model and the overview of the workflow.
Section III provides the system design of LEAPS and Sec-
tion IV presents implementation details. Section V shows
extensive evaluation of LEAPS in different attack scenarios.
Section VI discusses current limitations and proposes future
work. Section VII describes related work and we conclude in
Section VIII.

II. SYSTEM OVERVIEW

In this section, we first discuss the threat model and the
attacks we target. Then we present the general workflow of
LEAPS and give a brief introduction of the functionality of
each component.

A. Threat Model

We assume that the adversaries have already found a
way to infiltrate the system. They may achieve this through
physical access to a target computer, e.g., manually replacing
an application with a trojaned version, or using some social
engineering techniques to trick innocent users to click some
malicious web sites or open a disguised attachment in a phish-
ing email. They may also remotely exploit some unpatched
vulnerabilities and then implant a backdoor into some long-
running benign program. We do not intend to use LEAPS to
raise an alarm at the time of intrusion, instead we aim to detect
the anomalous behavior and backtrack to its entry point when
the remote adversary performs malicious actions through the
persistent backdoor implanted in the system.

In this paper we focus on camouflaged attacks, which run
under the cover of some benign program. This is a common
technique to make malicious behavior more difficult to detect.
Finally, we require that system event logging function be
turned on so that it can generate program execution traces
as input to our analysis.

B. Workflow of LEAPS

Similar to traditional anomaly detection systems, we divide
the workflow of LEAPS into two phases: Training Phase and
Testing Phase.

1) Training Phase: We illustrate the workflow of the Train-
ing Phase in Figure 1. Here we give a brief description of each
component and its input data format.

The initial input data consist of raw log files generated
by the system event logging engine. Event logging systems
are commonly equipped in modern operating systems for
diagnosing application performance problems, thus they are
able to walk the application stacks to backtrack execution
when system events are captured. These raw system event
log files are recorded in a controlled environment and will
be used as training data. The benign raw log is generated
when we execute a clean version of an application; whereas
the mixed raw log is generated when the parasitic malicious
payload (embedded in the binary or injected through remote
exploitation) and the benign application code run in the same
process context, leading to interleaved execution of benign and
malicious code.

Our Raw Log Parser is similar to the front end of Introperf
[20]. We parse the raw log file, correlate stack walk traces
with corresponding system events, and extract function and
library information sliced for each process in both the user and
kernel space. The output, which we term stack-event correlated
log, consists of itemized system events for the application of
interest. Moreover, each event is attached with its stack walk
trace annotated with libraries and functions.

The Stack Partition Module is for splitting the stack walk
trace of each event into two parts, application stack trace
and system stack trace. Application stack trace consists of
the stack walk within the application itself. We use this to
infer the application’s CFG because it contains both explicit
and implicit execution information. System stack trace consists
of stack walk trace in the shared libraries and the operating

5858

Raw Log
Parser

Stack Partition
Module

Control Flow Graph
Inference Module

Supervised Statistical
Learning Module

Mixed Raw Log

Benign Raw Log
Benign Stack-Event

Correlated Log

Mixed Stack-Event
Correlated Log

Benign Application
Stack Trace

Mixed Application
Stack Trace

Benign System
Stack Trace

Mixed System
Stack Trace

Data Preprocessing
Module

Benign Dataset

Mixed Dataset Weighted Dataset
Benign/Malicious

Model

Training Phase

Benign CFG Mixed CFG

Fig. 1: Workflow of the Training Phase of LEAPS

system (OS) kernel. We note that the differences in system-
level behavior (e.g., system events, shared libraries, and li-
brary/kernel functions) are best suited for distinguishing the
benign functionality from the malicious functionality. Thus we
extract features used by the statistical learning model from the
system stack trace in the system event log.

The Data Preprocessing Module extracts features from the
system stack trace. Here we apply hierarchical clustering to
group the functions and libraries into clusters. This generates
both the benign dataset and the mixed dataset, which are ready
to be used by the statistical machine learning engine.

The Control Flow Graph Inference Module builds the CFG
of the application by inspecting the application stack trace. We
construct two CFGs separately from the benign application
stack trace and the mixed application stack trace. Then we
compare these two CFGs to measure the distance of each
execution path in the mixed CFG to the benign CFG. As we
can map each execution path to its affiliated system event,
we assign a weight (computed based on the distances of all
execution paths attached to this event) to each event in the
mixed dataset (generated by the Data Preprocessing Module)
and generate a weighted dataset.

Our Supervised Statistical Learning Module is a unified
learning system for building the benign/malicious classifier.
We employ a Weighted Support Vector Machine, which is a
binary classification model, to obtain the classifier based on the
training data generated from the Data Preprocessing Module.
We treat the data in the benign dataset as the positive samples
in the statistical learning model, while the data in the weighted
mixed dataset are viewed as the negative samples. We can
apply the learned benign/malicious classifier to detect attacks
from production system logs.

2) Testing Phase: After the Training Phase, we have
generated application-wise binary classifiers from the training
data. In the Testing Phase, first we perform application slicing
on the system event log (same as in the Training Phase) to
generate the testing data. Then we apply the classification
models (targeting different application/payload combinations)
to the testing data for detection.

We point out that we use the application-wise binary
classifier only for the convenience of evaluation. When applied
to attack detection in real situations, LEAPS can coalesce all
application data from the system event log to learn a universal
classifier for testing.

III. SYSTEM DESIGN

Following the workflow in the previous section, we now
highlight some key techniques we have developed for LEAPS
and describe the algorithms behind them.

A. Data Preprocessing

Data preprocessing is the essential step before applying
any statistical learning model. It requires domain knowledge to
interpret the raw data, extract distinguishing features for clas-
sification, and discretize these features to be ready as the input
to statistical learning. Because the statistical learning model is
general and not specific to our raw data, data preprocessing
is critical to the effectiveness of the final classification model
generated.

In LEAPS, we choose to use system events and information
in their correlated system-level stack traces to characterize the
program behavior being executed. As mentioned in Section II,
after parsing the raw log file, we are able to correlate the stack
walk traces with their corresponding system events. Stack walk
trace entries contain the function invocations leading to this
event from the application. Then we partition the stack trace
and only select the system stack trace and system events as
input to the data preprocessing module.

Each entry in the system stack trace contains both the
library and function information. We aggregate the libraries
and functions of each event and generate a 3-tuple entry:
{Event_Type, Lib, Func}. Event_Type stands for the type
of this system event. Lib and Func stand for the set of
libraries and functions in the system stack trace of this event.
Event_Type is well defined in the system, and thus can be
naturally mapped to the integer space. For Lib and Func,
we leverage hierarchical clustering [21] to group similar li-
brary/function sets into one cluster. We use set dissimilarity
as the metric to calculate a pairwise distance matrix, DM , as
follows:

DM[i][j] = set_dissimilarity(i, j) = 1− ‖seti ∩ setj‖
‖seti ∪ setj‖ (1)

We utilize this pairwise distance matrix in the hierarchical
clustering model to obtain optimal clusters. Finally we replace
Lib and Func in the 3-tuple entry with its corresponding
cluster number and Event_Type with the integer based on its
event type. Figure 2 gives a concrete example of preprocessing
a SysCallEnter event and its 3-tuple entry result. We use these
discretized 3-tuple entries as the input data to the statistical
learning model.

B. Control Flow Graph Inference

In our approach, we need the CFG of the benign application
execution as an oracle to process the log mixed with the benign
and malicious execution. While CFGs of binary executables
can be acquired using static or dynamic analysis, generating
CFGs statically from binaries is challenging due to various

5959

@107: EventType=SysCallEnter EventDataLength=8 SysCallAddress=0xfffff9600016e138<win32k.sys!NtUserWaitMessage+0x0>
 #0: StackAddress=0xfffff80001a7d3c5 ImageName="ntoskrnl.exe" OffsetToImage=0x713c5<ntoskrnl.exe!KiSystemServiceExit>
 #1: StackAddress=0x757a2dd9 ImageName="wow64cpu.dll" OffsetToImage=0x2dd9<wow64cpu.dll!CpupSyscallStub>
 #2: StackAddress=0x757a2d92 ImageName="wow64cpu.dll" OffsetToImage=0x2d92<wow64cpu.dll!Thunk0Arg>
 #3: StackAddress=0x7581d07e ImageName="wow64.dll" OffsetToImage=0xd07e<wow64.dll!RunCpuSimulation>
 #4: StackAddress=0x7581c549 ImageName="wow64.dll" OffsetToImage=0xc549<wow64.dll!Wow64LdrpInitialize>
 #5: StackAddress=0x77b684c8 ImageName="ntdll.dll" OffsetToImage=0x484c8<ntdll.dll!LdrpInitializeProcess>
 #6: StackAddress=0x77b67623 ImageName="ntdll.dll" OffsetToImage=0x47623<ntdll.dll! ?? ::FNODOBFM::`string'>
 #7: StackAddress=0x77b5308e ImageName="ntdll.dll" OffsetToImage=0x3308e<ntdll.dll!LdrInitializeThunk>
 #8: StackAddress=0x771a438d ImageName="user32.dll" OffsetToImage=0x2438d<user32.dll!NtUserWaitMessage>
 #17: StackAddress=0x77d39d72 ImageName="ntdll.dll" OffsetToImage=0x39d72<ntdll.dll!__RtlUserThreadStart>
 #18: StackAddress=0x77d39d45 ImageName="ntdll.dll" OffsetToImage=0x39d45<ntdll.dll!_RtlUserThreadStart>

Event_Num Event_Type Lib Func
 @107 7 2 40

Hierarchical Clustering

Fig. 2: The Result of Conducting Hierarchical Clustering on a
System Event

Addr_5

Addr_4

Addr_3

Addr_2

Addr_1

Event 1

Addr_7

Addr_6

Addr_3

Addr_2

Addr_1

Event 2

Implicit Path

Explicit Path

Fig. 3: Example of Control Flow Graph Inference

difficulties such as identifying function boundaries [22], dis-
tinguishing instructions from data entries, dynamic loaded
libraries, obfuscation, binary packing, and the impracticality
of instrumenting real world binaries to collect fine grained
dynamic execution information. Hence, we decide to derive
CFGs only from the application stack trace extracted from the
system event log. While the completeness of the inferred CFG
is dependent on the frequency of the system events and the
exercised functionality when logging is enabled, it is sufficient
to produce an incomplete CFG that can approximately reflect
the general execution structure of the application. As we will
show later, we leverage a heuristic algorithm to predict the
missing parts of the benign CFGs and recognize malicious
payloads that do not belong to the original benign graphs.
Therefore, a unique advantage of LEAPS is that it only relies
on the system log, without analyzing the binaries.

We give a concrete example in Figure 3. For each indi-
vidual event, there is an application stack trace attached to
it. There are two events shown in this figure. For Event 1,
the application stack trace starts from Addr_1 to Addr_5.
Event 2 is the subsequent event and its stack trace becomes
different from Event 1 after Addr_3, which invokes Addr_6
and Addr_7. We are able to identify two types of control
flow within the application stack trace. We call the first type
of control flow an explicit path, which indicates the function
invocations in the stack trace. For example, the execution path
from Addr_1 to Addr_2 is an explicit path. We call the other
type of control flow an implicit path, which we infer from stack
traces of two adjacent events. In Figure 3, Addr_3 invokes
Addr_4 in Event 1 and Addr_6 in Event 2, which indicates
there is a control flow from Addr_4 to Addr_6 in the program.
Based on these two criteria, we build the CFG incrementally
by enumerating all events and their application stack traces.

We present the detailed algorithm in Algorithm 1. In Line
12, we find the branch point by comparing two adjacent stack

Algorithm 1 Control Flow Graph Inference

Input: funcentry ← GEN_CFG

ast ← stack_trace_file
cfg ← empty_dict

1: procedure ADDTO_CFG(cfg, start, end)
2: if cfg.haskey(start) then
3: cfg[start].add(end)
4: else
5: cfg[start] := set([end])

6: procedure BRANCH_POINT(prev_stacklist, curr_stacklist)
7: index := COMMON_PREFIX_LEN(prev_stacklist, curr_stacklist)
8: return index
9: procedure GEN_CFG(ast, cfg)

10: while line do
11: if isEvent(line) then
12: branchidx := BRANCH_POINT(prev_stacklist, curr_stacklist)
13: ADDTO_CFG(cfg, prev_stacklist[branchidx], curr_stacklist[branchidx])
14: for i ∈ [0, LEN(stacklist)-1] do
15: ADDTO_CFG(cfg, curr_stacklist[i], curr_stacklist[i+1])

16: prev_stacklist := curr_stacklist
17: curr_stacklist.clear()
18: else if isStack(line) then
19: funcaddr := EXTRACT_FUNCADDR(line)
20: curr_stacklist.push(funcaddr)

21: line := ast.readline()

traces and add the implicit path in Line 13. In Line 15, we
add the explicit paths for all the function invocations within
one stack trace.

We apply this CFG inference algorithm on both the benign
application stack trace and the mixed application stack trace.
Thus we are able to generate two CFGs. Figure 4-(1) shows the
CFG of a benign execution of Vim, whereas Figure 4-(2) shows
the CFG of a trojaned Vim that contains the malicious payload
of a Reverse TCP Shell. By comparing these two CFGs (e.g.,
aligning nodes with the same address in two graphs), it is not
difficult to identify that the left subgraph of the Vim mixed
CFG is similar to the Vim benign CFG because both use the
benign functionality of Vim. But the right subgraph of the
Vim mixed CFG is unique, indicating that this is more likely
to be from the anomalous execution caused by the malicious
payload. We point out that, although the CFG alone may be
used as a attack signature for detection, it is not robust enough
when encountering polymorphic malware in the real world.
This is the reason we introduce the statistical learning model
for a behavior-based attack detection system.

C. Weight Assessment

With the inferred benign CFG, we aim to assess the degree
of “benignity” for each event in the mixed dataset. We show
the algorithm for the weight assessment in Algorithm 2.

The input to this algorithm is the benign CFG and the
mixed CFG inferred from the application stack traces. When
building the CFG from the mixed application stack trace, we
also create a reverse mapping, named memap in Algorithm 2’s
input, from the program path to the event number.

We start by iterating each program path in the mixed CFG.
We check whether the start and end vertices of this path are
also connected in the benign CFG. If they are connected, we
assign 1 to the weight (whose range is [0, 1]) for this path.
Otherwise, it means this path does not exist in the benign
CFG.

As mentioned before, the inferred CFG is not complete.
It is possible that some paths in the mixed CFG are benign,

6060

(1) Vim Benign Control Flow Graph

(2) Vim Mixed Control Flow Graph (with Reverse TCP Shell as Payload)

Similar Subgraph

Anomalous Subgraph

Fig. 4: Comparison of (1) Vim Benign CFG and (2) Vim Mixed CFG

Algorithm 2 Weight Assessment

Input: funcentry ← COMPARE_CFG

bcfg ← benign_cfg_dict
mcfg ← mixed_cfg_dict
memap ← mixed_event_dict

1: procedure GEN_CFG_DENSITY(cfg)
2: for start, endset ∈ cfg.iter() do
3: for end ∈ endset do
4: density_array.add(start)
5: density_array.add(end)

6: return SORT(density_array)

7: procedure CHECK_CFG(start, end, cfg, level)
8: if start = end ∧ level �= 0 then
9: return True

10: valueset := cfg.get(start)
11: if valueset.empty() then
12: return False
13: level := level + 1
14: for value ∈ valueset do
15: if CHECK_CFG(value, end, cfg, level) then
16: return True
17: return False
18: procedure SET_WEIGHT(eventmap, key, weight, result)
19: if eventmap[key] �= nil then:
20: for eventnum ∈ eventmap[key] do
21: if result[eventnum] = nil then
22: result[eventnum] := {’weight’:weight, ’number’:1}
23: else
24: number := result[eventnum][’number’]
25: result[eventnum] := {REBALANCE(weight,number), number+1}

26: procedure ESTIMATE_WEIGHT(addr, density_array)
27: addr_idx := BISECT(density_array, addr)
28: mindiff := MIN(start - density_array[addr_idx-1], density_array[addr_idx] - addr)
29: weight := 1 - mindiff/(density_array[addr_idx] - density_array[addr_idx-1])
30: return weight

31: procedure COMPARE_CFG(bcfg, mcfg, memap)
32: density_array := GEN_CFG_DENSITY(bcfg)
33: for start, endset ∈ mcfg.iter() do
34: for end ∈ endset do
35: if CHECK_CFG(start, end, bcfg) then
36: weight := 1
37: else
38: if WITHIN_RANGE(start, end, density_array) then
39: weight := ESTIMATE_WEIGHT(start, density_array)
40: else
41: weight := 0

42: SET_WEIGHT(memap, start+end, weight, result)

but missing in the benign CFG due to its incompleteness.
For example, some additional benign functionality might be
executed and recorded in the mixed system log, but not in
the benign system log. In order to address this problem, we
create a density array by inserting all the addresses of nodes
appearing in the benign CFG. For any path that is not in the
benign CFG, if it is in the range of this density array, we
estimate its weight based on its normalized distance to the
closest nodes in the benign CFG. For all other paths that
exceed the boundary of the density array, we assign 0 as
its weight. This weight assessment approach is based on the
observation that code close to the benign code is more likely
to be benign and code far away from the benign code is more
likely to be malicious. That is also the reason why LEAPS can
tolerate the incompleteness of the inferred CFG.

With the weight for each program path in the mixed CFG,
we search the reverse mapping memap to find its corresponding
event number. Each event may have multiple paths mapped.
We compute the weight of each event by averaging all its
paths’ weights.

D. Binary Classification Model

The building of the benign/malicious classification model
is a key component in LEAPS. Given the benign dataset and
mixed dataset with assigned weights, our goal is to learn
an accurate binary classifier from these training data. This
classifier will be used to distinguish malicious events from
benign ones in the unseen testing data.

We build two binary classification models for comparison.
The first is purely based on the system-level function call graph
(with no statistical learning) and the second uses WSVM. We
discuss their strengths and weaknesses separately and compare
the results quantitatively in the evaluation section.

1) Decision Model Based on System-level Call Graph:
System-level behaviors, such as functions from shared libraries

6161

and the OS kernel, represent the interactions between appli-
cations and their underlying execution environment. These
features are widely adopted in anomaly detection systems
to reveal aberrant execution of the application. Conceptually
similar to existing system behavior based classification systems
[23], [24], we build our first classification model based on the
system-level function call graph (built from the system stack
trace in the system event log). From the benign/mixed system
stack trace, we extract the function invocation chain from the
stack trace of each event. Thus we can build the two system-
level function call graphs, the benign call graph (BCG) and
mixed call graph (MCG), separately. We use the former as
the positive model and the latter as the negative model. In
the Testing Phase, we extract the call relations from the stack
trace in the testing data and check them in both the BCG and
MCG. We make a classification decision for each individual
event based on the existence of such call relations in both call
graphs.

From the results presented in Section V, we find that the
hit rates are low for classifying benign testing data for all
datasets. The first reason for this is that the system-level call
graph model is not able to classify data points that do not
appear in the training set. The second reason is that the stack
traces of benign events may exist in both the BCG and MCG,
which make it difficult for the model to accurately predict their
classes.

Furthermore, we find that in some specific datasets (e.g.,
chrome_reverse_https and chrome_reverse_tcp), the hit rates
are also low for classifying malicious testing data. We manu-
ally check the events that lead to this problem. The main cause
is that some outlier points may greatly affect the classification
decision. To give a specific example, consider a kernel function
invoked by both benign and malicious code. Assume the
benign code only calls the function once and the malicious
code calls it 1000 times, the corresponding function invocation
edges in both call graphs will be the same. Thus the call graphs
cannot yield any information of the invocation frequency.
Further assume that this function invocation appears in the
testing data. From a statistical perspective, this invocation is
likely to be from the malicious code, but it will be classified
as “undecidable” by the call graph model.

2) Weighted Support Vector Machine: Considering the lim-
itations of the call graph model above, we design a more
sophisticated binary classification model based on statistical
learning. There are multiple machine learning techniques for
learning binary classifiers, such as Logistic Regression (LR)
[25], SVM [26], and Decision Tree [27]. Due to the dis-
criminative classification power of SVM and its popularity,
we use SVM to build our classification model. Furthermore,
to incorporate the weights assigned to the training data, we
employ a Weighted SVM method in this work to find an
optimal classifier by taking the confidence of each data point
into consideration.

Suppose there are n training data points from both the
benign and mixed datasets, denoted D = {(xi, yi, ci), i =
1, . . . , n} where xi is the feature generated from data prepro-
cessing for the i-th data point and yi is its binary label. We
treat the benign data as positive samples, while the mixed data
are viewed as negative samples, i.e., yi = 1 for the benign data
and yi = −1 for the mixed data. ci corresponds to the weight.

Benign Points (+1)
Mixed Points (-1)
Original Decision Boundary
WSVM Decision Boundary

Increase Weight

Decrease Weight

Fig. 5: An illustration of the classifiers learned by the original
SVM model and the Weighted SVM model.

Note that the weight ci is a real value between 0 and 1. For the
benign data, the weight is simply 1. For the mixed data, we
obtain the weight from the weight assessment in Section III-C.
The purpose of the Weighted SVM is to learn a classifier w,
which can accurately distinguish benign data from malicious
data. We give the formulation of the Weighted SVM as follows:

min
w,ξ

‖w‖2 + λ
∑

i

ciξi

s.t. yiw
Txi ≥ 1− ξi
ξi ≥ 0

(2)

here ξi is the classification error of the i-th data point. wTxi

is the prediction score of xi based on the classifier w, i.e., the
larger the value, the more likely xi is benign. The term

∑
i ciξi

in the objective function is the total classification loss/error
weighted by the importance of the data, which we are trying
to minimize. The term ‖w‖2 is the regularizer on the classifier
to avoid the overfitting problem [25], which is widely adopted
in statistical machine learning applications. λ is the trade-off
parameter to balance the two terms. The constraint enforces
that the prediction of the data point, wTxi, is consistent with
its label yi. For example, for a benign point with label yi = 1,
if the classifier’s output, wTxi, is negative, then the model will
incur a large classification error ξi due to this constraint.

Based on the generalized representer theorem [28], the
minimizer to the optimization problem in Eqn. 2 exists and
has a representation of the form:

wTxi =
n∑

j=1

αjyjk(xi, xj) (3)

where k(xi, xj) is a kernel function defined on the fea-
ture space. We use a Gaussian Kernel, k(xi, xj) =

exp(−‖xi−xj‖2
σ2), in this work, and σ2 is the radius parameter.

Substituting Eqn. 3 into Eqn. 2, we can obtain an equivalent
problem:

min
α

−
∑

i

αi +
1

2

∑

i,j

αiαjyiyjk(xi, xj)

s.t. 0 ≤ αi ≤ λci

(4)

The above optimization problem can be solved efficiently using
a quadratic programming solver. By minimizing this objective
function, we can achieve an optimal classifier. We illustrate
the difference between the original SVM method and the

6262

Weighted SVM method in Figure 5. We can see from this
figure that the classifier learned from the original SVM model
may misclassify benign points to malicious. The reason is
that a certain amount of mixed data points actually belong
to benign events. By minimizing the classification error on
these mislabeled data points, the SVM classifier does not
perform well especially on benign data. On the other hand, by
assigning proper weights via CFG guidance (i.e., decreasing
the weights of mislabeled points and increasing the weights of
true malicious points), the classifier learned from the Weighted
SVM distinguishes the benign points from the malicious ones
more accurately.

In the Testing Phase, we apply the learned classification
model to the testing data xt to give the prediction as follows:

yt = wTxt =
n∑

i=1

αiyik(xi, xt) (5)

where xt is classified as malicious if yt < 0.

IV. IMPLEMENTATION

We leverage the Event Tracing for Windows (ETW) [29]
framework to log system events and generate stack walk
traces. The ETW framework is a general-purpose tracing
engine equipped in the latest Windows operating systems (first
introduced in Windows 2000). It provides a tracing mechanism
to log events triggered in multiple system layers, from user
applications to kernel components. ETW has been widely
adopted by third-party management tools for performance
diagnostics. The output of ETW is an Event Tracing Log
(ETL) file, which is the raw input to LEAPS. ETW allows
us to enable stack walking for a selection of system events,
e.g., system call, process/thread creation, image load/unload,
file operations, registry tracing, etc. We parse the raw ETL file
to generate a stack-event correlated log. We perform all ETW
logging on a machine with an Intel Core i7 3.40 GHz CPU,
12GB RAM, and Windows Server 2008 R2 64-bit operating
system.

We implement the Stack Partition Module, Data Prepro-
cessing Module, and Control Flow Graph Inference Module
in Python. When grouping the library and function set in the
Data Preprocessing Module, we use the hierarchical clustering
implementation in the clustering package of SciPy2 and choose
UPGMA method as the linkage criterion, i.e., the distance
between any two clusters is the mean distance between all
elements of each cluster.

We implement the Supervised Statistical Learning Module
under the LIBSVM [26] framework. LIBSVM3 is an integrated
system for support vector classification, regression and dis-
tribution estimation with a wide range of machine learning
applications. The input of the Weighted SVM model is the
benign and mixed (with weights) training data. The output of
LIBSVM is a binary classification model, which we use for
attack detection in our testing data. In our implementation, we
use 10-fold cross validation [25] to tune the model parameter
λ and σ2 on the training set.

2http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
3http://www.csie.ntu.edu.tw/~cjlin/libsvm/

V. EVALUATION

In this section, we report our evaluation results on the
effectiveness of LEAPS. First we describe the datasets in our
experiments, i.e., the source of the data and the criteria of data
selection. Then we discuss the procedure of our experiments
and the measurements of the evaluation. Finally we examine
three representative cases in detail and present the results of
all other cases briefly.

A. Dataset

1) Data Source: We use 21 datasets (Table I) of different
combinations of applications, malicious payloads, and attack
methods to evaluate our approach. We categorize the attack
methods into two groups: offline infection (malicious payload
embedded in a benign binary) and online injection (malicious
payload injected into a benign process at runtime). Each
dataset consists of three subsets: a) pure benign samples, b)
mixed samples, and c) pure malicious samples.

We obtain pure benign samples by exercising the benign
application. Mixed samples are from profiling either trojaned
applications (i.e., offline infection) or tampered processes (i.e.,
online injection). Thus mixed samples contain both benign and
malicious events. Pure benign samples and mixed samples can
be naturally collected in the real environment. We use them
as positive/negative samples for training. As we mentioned
before, because mixed samples contain benign events as noise,
classifiers learned by traditional statistical learning methods
are not accurate.

Pure malicious samples are difficult to obtain in a real
environment because malicious payloads are always attached
to benign applications. For this evaluation, we manually extract
the malicious payloads and recompile them as independent
malware. Here we only use pure malicious samples as the
ground truth for testing to verify the effectiveness of our
binary classifier on negative samples. After hierarchical clus-
tering, each subset contains three features: Event_Type, Lib,
and Func.

2) Data Selection: We select the training data for learning a
binary classifier from: a) pure benign samples (positive training
samples) and b) mixed samples (negative training samples). We
select the testing data from: a) pure benign samples (positive
testing samples) and c) pure malicious samples (negative
testing samples). To avoid training and testing on the same
benign samples, we divide the pure benign samples into two
non-overlapping parts, 50% for training and 50% for testing.
Taking the order of adjacent events into account, we increase
the dimensions from 3 up to 30 by coalescing each 10
consecutive samples into one 30-dimension data point. Due
to the large number of data samples, we randomly select 20%
of the samples from each dataset to form the training and
testing sets. In this way, we can achieve reasonable running
time for the training phase and also near-complete coverage
of the behavior in each dataset.

B. Evaluation Procedure and Measurement of Effectiveness

We compare our CFG guided Weighted SVM approach
(denoted WSVM in Figure 6 and 7) with the other two classi-
fication approaches, i.e., approaches based on the system-level

6363

TABLE I: Evaluation Results of LEAPS on Camouflaged Attacks

Name Attack Method Application Payload ACC PPV TPR TNR NPV

winscp_reverse_tcp Offline Infection WinSCP Reverse TCP Shell 0.932 0.999 0.865 0.999 0.881
winscp_reverse_https Offline Infection WinSCP Reverse HTTPS Shell 0.927 0.991 0.862 0.992 0.878
chrome_reverse_tcp Offline Infection Chrome Reverse TCP Shell 0.877 0.998 0.755 0.999 0.803
chrome_reverse_https Offline Infection Chrome Reverse HTTPS Shell 0.907 0.998 0.815 0.999 0.844
notepad++_reverse_tcp Offline Infection Notepad++ Reverse TCP Shell 0.846 0.998 0.693 0.998 0.765
notepad++_reverse_https Offline Infection Notepad++ Reverse HTTPS Shell 0.866 0.998 0.733 0.998 0.789
putty_reverse_tcp Offline Infection Putty Reverse TCP Shell 0.886 0.815 0.998 0.774 0.998
putty_reverse_https Offline Infection Putty Reverse HTTPS Shell 0.869 0.999 0.739 0.999 0.793
vim_reverse_tcp Offline Infection Vim Reverse TCP Shell 0.914 0.995 0.832 0.996 0.856
vim_reverse_https Offline Infection Vim Reverse HTTPS Shell 0.919 0.998 0.839 0.999 0.861

vim_codeinject Offline Infection Vim Pwddlg 0.852 0.985 0.715 0.989 0.776
notepad++_codeinject Offline Infection Notepad++ Pwddlg 0.802 0.948 0.639 0.965 0.728
putty_codeinject Offline Infection Putty Pwddlg 0.802 0.919 0.661 0.942 0.736

putty_reverse_tcp_online Online Injection Putty Reverse TCP Shell 0.894 0.825 0.999 0.789 0.999
putty_reverse_https_online Online Injection Putty Reverse HTTPS Shell 0.869 0.999 0.738 0.999 0.792
notepad++_reverse_tcp_online Online Injection Notepad++ Reverse TCP Shell 0.927 0.991 0.861 0.992 0.877
notepad++_reverse_https_online Online Injection Notepad++ Reverse HTTPS Shell 0.845 0.998 0.690 0.999 0.763
vim_reverse_tcp_online Online Injection Vim Reverse TCP Shell 0.963 0.933 0.998 0.928 0.998
vim_reverse_https_online Online Injection Vim Reverse HTTPS Shell 0.919 0.995 0.842 0.996 0.863
winscp_reverse_tcp_online Online Injection WinSCP Reverse TCP Shell 0.950 0.996 0.904 0.996 0.912
winscp_reverse_https_online Online Injection WinSCP Reverse HTTPS Shell 0.921 0.998 0.843 0.998 0.864

call graph (denoted CGraph in Figure 6 and 7) and traditional
SVM, on all 21 datasets. We set the model parameters λ and σ2

using 10-fold cross validation on the training set. To eliminate
fluctuation caused by the random selection of the training and
testing sets, we average all results over 10 runs.

We measure the performance of the classification results
based on: True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). TP indicates ac-
tual benign samples that are correctly classified as benign.
Similarly, TN represents malicious samples that are correctly
classified as malicious. FP indicates malicious samples that
are misclassified as benign. FN represents benign samples that
are misclassified as malicious. Based on these four results,
we evaluate the performance of the different methods by
five measurements: 1) Accuracy (ACC), 2) Positive Predictive
Value (PPV or Precision), 3) True Positive Rate (TPR or
Recall), 4) True Negative Rate (TNR or Specificity), and 5)
Negative Predictive Value (NPV) [30].

1) Accuracy: By definition, the ACC is the portion of the
true results (both TP and TN) in the total test samples.

ACC =
TP + TN

TP + FP + FN + TN
(6)

According to Figure 6 and 7, the ACCs of all applica-
tions elevate by varying degrees when using WSVM com-
pared to SVM and CGraph. For example, the ACC of win-
scp_reverse_https_online increases from 59.9% (CGraph) to
92.1% (WSVM), which reflects a significant improvement on
the overall hit rate of both benign and malicious prediction.

Though ACC indicates the overall performance of a binary
classification, it may yield misleading results if the data set
is unbalanced. Thus, we introduce four other measurements
based on the confusion matrix (TP, TN, FP, FN) to give a
more comprehensive evaluation of the experimental results.

2) Positive Predictive Value: Also known as precision, PPV
measures the portion of actual benign samples in all predicted
benign samples.

PPV =
TP

FP + TP
(7)

As we can see from Figure 6 and 7, WSVM pro-
duces the highest PPV values. For instance, the PPVs of

putty_reverse_tcp_online are 71.2% (CGraph), 79.6% (SVM)
and 82.5% (WSVM).

3) True Positive Rate: Also known as recall, TPR measures
the number of instances that are correctly classified as benign
out of the total benign instances.

TPR =
TP

TP + FN
(8)

The TPR of WSVM has obvious improvement for all
21 cases. For example, in Figure 7, the TPR of
putty_reverse_https_online increases from 41.7% (CGraph) to
56.4% (SVM) and reaches 73.8% (WSVM).

4) True Negative Rate: True Negative Rate is also known as
specificity. Similar to TPR, TNR calculates, out of the instances
that are actually malicious, the number of instances that are
correctly classified as malicious.

TNR =
TN

FP + TN
(9)

From Figure 6, the TNR of vim_codeinject increases from
67.9% (CGraph) to 98.9%(WSVM). We have similar improve-
ments of TNR on all other 20 cases according to Figure 6 and
7.

5) Negative Predictive Value: Similar to PPV, NPV mea-
sures the portion of the actually malicious samples out of the
total predicted malicious samples.

NPV =
TN

TN + FN
(10)

Again, WSVM ranks the highest in all 21 applications in terms
of NPV. For instance, the NPV of putty_reverse_https_online
increases from 69.9% (SVM) to 79.2% (WSVM), as seen in
Figure 7.

C. Results and Discussion

Figure 6 and 7 show the results of the offline infection
and online injection datasets respectively. We also present the
detailed results of all datasets in Table I. From these figures, we
can see that the proposed CFG guided Weighted SVM method
achieves the best results on all measurements in all cases. In
the rest of this section, we discuss three representative cases
in detail.

6464

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

chrome_reverse_https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

chrome_reverse_tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++_reverse_https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++_reverse_tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty_reverse_https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty_reverse_tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim_reverse_https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim_reverse_tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp_reverse_https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp_reverse_tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim_codeinject

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty_codeinject

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++_codeinject

Fig. 6: Results Comparing LEAPS (WSVM) with System-level Call Graph and SVM for Offline Infection Detection

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++_reverse_https_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++_reverse_tcp_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty_reverse_https_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty_reverse_tcp_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim_reverse_https_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim_reverse_tcp_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp_reverse_https_online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp_reverse_tcp_online

Fig. 7: Results Comparing LEAPS (WSVM) with System-level Call Graph and SVM for Online Injection Detection

1) Case Study I — winscp_reverse_tcp: This attack is in
the offline infection category. The adversary can choose an
arbitrary benign application binary and transform it into a
trojaned application. They can implant the malicious payload
into the binary and detour the program path at some specific
location to trigger the payload. The payload may create a
persistent backdoor and wait for a command from the re-
mote adversary. After the adversary creates the backdoor, the
trojaned program returns back to the normal control flow of

the benign application. Legitimate users cannot detect that the
remote hacker has already controlled their machine when the
trojaned application is running.

In this case, we leverage the tools and payloads in the
Metasploit Framework [31] to generate the trojaned applica-
tion. Metasploit Framework is a widely-adopted system for
developing and executing exploit code to perform penetration
testing. Msfpayload is a command-line tool for generating

6565

different types of shellcode in the Metasploit Framework.
We use this tool to generate a Meterpreter, a dynamically
extensible payload that uses in-memory DLL injection stagers.
The Meterpreter communicates with the remote server via a
reverse TCP connection. It enables the remote adversary to
perform all kinds of hacking operations on a victim system,
e.g., keylogging, file uploading, taking screenshots, password
hash collection, etc. The benign host application in this case
is WinSCP. We leverage Msfencode to encode the payload
with shikata_ga_nai (a polymorphic XOR additive feedback
encoder) three times and then embed it into the WinSCP
binary.

We can see from the results that all five measurements
increase if we use the WSVM model. Take ACC and TPR
for instance, we can see from Figure 6 that these two mea-
surements based on the call graph model are 74.79% and
68.16%. ACC and TPR increase to 85.81% and 72.08% if we
use traditional non-weighted SVM. Our Weighted SVM ap-
proach shows even better classification effectiveness compared
to the SVM method. For example, ACC and TPR increase
to 93.2% and 86.5%. These comparisons demonstrate the
superior performance of our proposed CFG guided Weighted
SVM approach.

2) Case Study II — vim_codeinject: This case is also in the
offline infection category, but the infection technique and the
payload are different. We choose the hacking tool Codeinject
[32] to inject a password dialog into a portable executable, in
this case Vim is the host application. When the user starts Vim,
a password dialog will be popped up asking for the password,
which is pre-set when the trojaned binary is generated. If the
user does not know the password, Vim exits silently.

From Figure 6, we can see that vim_codeinject increases
in all five measurements for each classification model. For
instance, ACCs for CGraph, SVM and WSVM are 35.5%,
72.5% and 85.2%. Another measurement, NPVs for CGraph,
SVM and WSVM are 51.8%, 64.6% and 78.2%, respectively.

3) Case Study III — putty_reverse_https_online: This case
is in the online injection category. In the event that there is
some unpatched vulnerability in the target system, an adversary
may craft some shellcode and perform a remote exploitation
to run the shellcode. In order to stay persistent in the system,
after taking control of the system, the adversaries can choose
a long-running process and inject a backdoor payload into
its memory space. They first allocate a memory slot for
the backdoor payload and then remotely create a thread to
run the code in parallel with the benign code. In this case,
the adversaries first leverage the Metasploit Framework to
take over the target system. Then they can run the script of
post/windows/manage/payload_inject to inject the Meterpreter
payload into the memory of a running Putty. Finally they can
connect to the Meterpreter payload running within the Putty’s
process via a reverse HTTPS connection.

We can see from Figure 7 that the ACC, PPV, TPR, TNR,
and NPV for WSVM are the highest, which is consistent with
our observation in the Case Study I and II. For example,
the corresponding ACCs for the three methods are 69.22%,
78.25% and 86.86%, and their respective TPRs are 41.2%,
56.1% and 73.8%.

VI. DISCUSSION

In this section, we examine the limitations of LEAPS
and propose potential solutions to address these problems.
In addition, we discuss some future research opportunities in
the area of attack detection by bridging program analysis and
machine learning based techniques.

A. Source-level Trojaned Applications

LEAPS currently targets camouflaged attacks against bi-
nary applications, which indicates that the relative offsets
of the benign code will not change. However, imagine that
the adversary has obtained the source code of this benign
application. He or she could add the source code of the
malicious payload into the original code base, recompile the
program, and deliver the trojaned application to the victim.

For closed-source software, only internal developers of the
software vendors can intentionally conduct such trojan im-
planting attacks. For software in the open-source community,
each line of the committed source code will be open to public
inspection, which makes such attacks more difficult. Assuming
there exist such malicious vendors or negligent maintainers,
currently LEAPS is not able to assign correct weights in the
mixed dataset because the CFG itself has been modified.

In order to address this limitation, we need to generalize
our CFG comparison algorithm. For trojaned applications,
assuming that the adversaries do not change the functionality
of the original benign software (they just implant the payload’s
source code), the general structure of the benign subgraph in
the CFG will not change. In light of this, instead of conducting
exact matching, we could search for isomorphic subgraphs in
both benign/mixed CFGs by identifying and aligning pivotal
nodes. We consider this as our future work to improve LEAPS.

B. Future Work in Learning

LEAPS employs a Weighted SVM model to distinguish
malicious events from benign ones. As shown in the experi-
mental results, LEAPS achieves reasonably good performance
on camouflaged attack detection, and consistently outperforms
approaches based on system-level call graph and pure SVM.
However, LEAPS only takes the order of adjacent events into
account. But in real scenarios, there may exist some causal
relations between multiple events dispersed far away (tempo-
rally) in the log. Therefore, we plan to explore more machine
learning techniques, such as conditional random field model
and hidden Markov model, to reveal such hidden relationships
between events.

VII. RELATED WORK

Host-based anomaly detection and malware classification
systems are well-researched in recent years. The general proce-
dure of these approaches is to extract the execution abstraction
from a subject program, build a model, and use this model to
make decisions on future data.

Some systems are based on the assumption that source code
or binary is available for analysis, thus they are able to derive
a precise model to represent the program’s execution. Wagner
et al. [1] define a model of expected application behavior
through static analysis of its source code, and then check the

6666

system call trace for compliance at runtime. Giffin et al. [2],
[3] introduce the Dyck model, based on static binary analysis,
to include program instrumentation on the binary to facilitate
efficient runtime monitoring. DOME [4] first identifies the
locations of system calls within the executables using static
analysis, and then verify at runtime that each observed system
call is invoked from its legitimate call site. SMIT [33] is
a malware indexing system that leverages an executable’s
function-call graphs to cluster malware. Kruegel et al. [34]
propose extracting CFGs from worm executables embedded
in the network stream to identify structural similarities among
polymorphic worms. In real-world scenarios, source code or
executables may not always be available for training. Fur-
thermore, obfuscated executables and complexity of binary
disassembly render static analysis difficult to build accurate
models. In comparison, LEAPS does not require static analysis
or instrumentation of application source or binary code. We
model the execution of the program only by analyzing the
system event log and infer its CFG to guide statistical learning.

Some researchers also propose black-box or gray-box ap-
proaches to infer the execution model without static analysis.
For example, Sekar et al. [6] propose an approach to gener-
ate a deterministic FSA by monitoring the normal program
executions at runtime, thus avoiding static analysis on source
code. Gao et al. [7] propose a gray-box approach that builds
execution graphs based on system call sequences and does
not require static analysis. Feng et al. [8] propose extracting
return addresses from the call stack to build a model of abstract
execution path and use the model to detect exploits. LEAPS
shares the methodology of dynamically deriving the program
execution model. Yet it is among the first efforts to leverage the
inferred execution models to refine statistical learning models
by pruning noisy training datasets.

Statistical learning techniques are also widely adopted in
anomaly detection research. Such techniques have the advan-
tage of being robust in processing incomplete training data,
thus they can usually achieve better classification results. The
input of these systems is based on the interaction between the
applications and OS (e.g., system call sequence, system state
change, and access activities). For example, Hofmeyr et al. [11]
propose to characterize normal behaviors of a program in terms
of system call sequences, thus they can detect an anomalous
execution if it produces aberrant system call sequences. Wespi
et al. [12] leverage Teiresias, an algorithm for discovering
patterns in unaligned biological sequences, to build a table of
variable-length patterns of audit events. Lee et al. [9], [10]
leverage data mining techniques to find patterns of system
features that describe program behavior. Bailey et al. [23]
develop a classification technique that categorizes malware
behavior in terms of system state changes, rather than from
system call patterns. Lanzi et al. [35] demonstrate that malware
detectors based on system call sequence may not be effective
in real-world scenarios and build a model based on access
activities on files and the registry.

Recently, some researchers introduce more sophisticated
machine learning models, such as HMM and SVM, to assist
classification. Warrender et al. [13] compare four anomaly
detection models based on the system call dataset and con-
clude that HMM achieves the best accuracy on average, but
with high computational costs. Gao et al. [36] propose the

concept of behavioral distance to compare the differences of
process’ behaviors on different platforms based on system
calls invoked. In subsequent work [14], they also introduce
HMM to measure the behavior distance to better account
for system call orderings. Heller et al. [16] use a one-class
SVM to perform training on a dataset of normal registry
accesses and then detect anomalous registry behavior in the
testing data. Kolter et al. [37] use n-grams of byte codes from
benign/malicious executables as features and evaluate them
on a variety of inductive methods to train the classification
model. Rieck et al. [15] extract behavior of malware in a
sandbox environment and use SVM to learn the classification
model for discriminating malware types. Bayer et al. [38]
leverage locality sensitive hashing to perform unsupervised
clustering based on the malware’s behavior extracted in a
controlled environment. Khan et al. [17] present a study on
using hierarchical clustering analysis for enhancing the training
time of SVM, especially for dealing with large data sets in
intrusion detection. Eskin [39] also recognizes the existence
of noisy training datasets. His solution is to first learn a
distribution probability over training data and then apply a
statistical test to detect anomalies. LEAPS also adopts SVM
as the statistical learning model. However, different from these
efforts that are purely based on learning, LEAPS leverages
the inferred CFGs as guidance to prune the noisy datasets,
thus effectively boosting the accuracy of the learned model
for detecting camouflaged attacks.

VIII. CONCLUSION

Camouflaged attacks implant malicious payloads into be-
nign applications and execute concurrently under the cover of
benign processes. This causes traditional statistical learning
based detection systems to generate a misleading decision
boundary due to noisy training data. In this paper, we present
LEAPS, a new attack detection system based on a supervised
statistical learning model to classify benign and malicious
system events. Different from existing approaches, LEAPS
leverages CFGs inferred from system event logs as guidance
to automatically refine noisy training data, leading to a more
accurate classification model for camouflaged attack detection.
We have conducted extensive evaluation on a range of real-
world attacks with offline and online camouflaging strategy.
Our experimental results demonstrate that LEAPS can effec-
tively improve classification accuracy compared to traditional
learning and system-level call graph based models.

ACKNOWLEDGMENT

This work was inspired by technical discussions with
Dr. Sukarno Mertoguno, who proposed the “Learn-2-Reason”
paradigm [19]. We also thank Brendan Saltaformaggio and the
anonymous reviewers for their constructive comments. This
research has been supported in part by ONR under Award
N000141410468, NSF under Award 1409668, and Cisco Sys-
tems under an unrestricted gift. Any opinions, findings, and
conclusions in this paper are those of the authors only and do
not necessarily reflect the views of our sponsors.

REFERENCES

[1] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
Proceedings of the 2001 IEEE Symposium on Security and Privacy,

6767

ser. SP ’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 156–.

[2] J. T. Giffin, S. Jha, and B. P. Miller, “Efficient context-sensitive intrusion
detection.” in NDSS, 2004.

[3] J. T. Giffin, S. Jha, and B. P. Miller, “Detecting manipulated remote
call streams,” in Proceedings of the 11th USENIX Security Symposium.
Berkeley, CA, USA: USENIX Association, 2002, pp. 61–79.

[4] J. C. Rabek, R. I. Khazan, S. M. Lewandowski, and R. K. Cunningham,
“Detection of injected, dynamically generated, and obfuscated malicious
code,” in Proceedings of the 2003 ACM Workshop on Rapid Malcode,
ser. WORM ’03. New York, NY, USA: ACM, 2003, pp. 76–82.

[5] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller, “Formalizing
sensitivity in static analysis for intrusion detection,” in Security and
Privacy, 2004. Proceedings. 2004 IEEE Symposium on, May 2004, pp.
194–208.

[6] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy, ser. SP ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 144–.

[7] D. Gao, M. K. Reiter, and D. Song, “Gray-box extraction of execution
graphs for anomaly detection,” in Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security, ser. CCS ’04. New
York, NY, USA: ACM, 2004, pp. 318–329.

[8] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in Proceedings of
the 2003 IEEE Symposium on Security and Privacy, ser. SP ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 62–.

[9] W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns from unix
process execution traces for intrusion detection,” in In AAAI Workshop
on AI Approaches to Fraud Detection and Risk Management. AAAI
Press, 1997, pp. 50–56.

[10] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion
detection,” in Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, ser. SSYM’98. Berkeley, CA, USA: USENIX
Association, 1998, pp. 6–6.

[11] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” J. Comput. Secur., vol. 6, no. 3, pp. 151–
180, Aug. 1998.

[12] A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using variable-
length audit trail patterns,” in Proceedings of the Third International
Workshop on Recent Advances in Intrusion Detection, ser. RAID ’00.
London, UK, UK: Springer-Verlag, 2000, pp. 110–129.

[13] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: alternative data models,” in Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on, 1999, pp. 133–145.

[14] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance measurement
using hidden markov models,” in Proceedings of the 9th International
Conference on Recent Advances in Intrusion Detection, ser. RAID’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 19–40.

[15] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning
and classification of malware behavior,” in Proceedings of the 5th
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[16] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo, “One
class support vector machines for detecting anomalous windows registry
accesses,” in In Proc. of the workshop on Data Mining for Computer
Security, 2003.

[17] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection
system using support vector machines and hierarchical clustering,” The
VLDB Journal, vol. 16, no. 4, pp. 507–521, Oct. 2007.

[18] S.-J. Horng, M.-Y. Su, Y.-H. Chen, T.-W. Kao, R.-J. Chen, J.-L. Lai,
and C. D. Perkasa, “A novel intrusion detection system based on
hierarchical clustering and support vector machines,” Expert systems
with Applications, vol. 38, no. 1, pp. 306–313, 2011.

[19] J. S. Mertoguno, “Human decision making model for autonomic cyber
systems,” International Journal on Artificial Intelligence Tools Vol. 23,
No. 6 (2014).

[20] C. H. Kim, J. Rhee, H. Zhang, N. Arora, G. Jiang, X. Zhang, and D. Xu,
“Introperf: Transparent context-sensitive multi-layer performance in-

ference using system stack traces,” in The 2014 ACM International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’14. New York, NY, USA: ACM, 2014, pp. 235–247.

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. Springer New York Inc.,
2001.

[22] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight:
Learning to recognize functions in binary code,” pp. 845–860, 2014.

[23] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in Proceedings of the 10th International Conference on Recent Ad-
vances in Intrusion Detection, ser. RAID’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 178–197.

[24] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,”
in Proceedings of the 18th Conference on USENIX Security Symposium,
ser. SSYM’09. Berkeley, CA, USA: USENIX Association, 2009, pp.
351–366.

[25] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006.

[26] C. Chang and C. Lin, “LIBSVM: A library for support vector ma-
chines,” ACM TIST, vol. 2, no. 3, p. 27, 2011.

[27] S. hyuk Cha, “A genetic algorithm for constructing compact binary
decision trees,” Journal of Pattern Recognition Research, 2009.

[28] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in COLT, 2001, pp. 416–426.

[29] I. Buch and R. Park, “Improve debugging and performance
tuning with etw,” MSDN Magazine,[Online],Avaliable from:
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx, 2007.

[30] S. V. Stehman, “Selecting and interpreting measures of thematic clas-
sification accuracy,” Remote sensing of Environment, vol. 62, no. 1, pp.
77–89, 1997.

[31] “Metasploit,” http://www.metasploit.com/.

[32] “Portable Executable (P.E.) Code Injection: Injecting an Entire
C Compiled Application,” http://www.codeproject.com/Articles/24417/
Portable-Executable-P-E-Code-Injection-Injecting-a.

[33] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New York,
NY, USA: ACM, 2009, pp. 611–620.

[34] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,”
in Proceedings of the 8th International Conference on Recent Advances
in Intrusion Detection, ser. RAID’05. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 207–226.

[35] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: Using system-centric models for malware protection,” in
Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’10. New York, NY, USA: ACM, 2010,
pp. 399–412.

[36] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance for intrusion
detection,” in Proceedings of the 8th International Conference on Recent
Advances in Intrusion Detection, ser. RAID’05. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 63–81.

[37] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” J. Mach. Learn. Res., vol. 7, pp.
2721–2744, Dec. 2006.

[38] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, vol. 9. Cite-
seer, 2009, pp. 8–11.

[39] E. Eskin, “Anomaly detection over noisy data using learned probability
distributions,” in Proceedings of the Seventeenth International Confer-
ence on Machine Learning, ser. ICML ’00. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, pp. 255–262.

6868

