
Process Implanting: A New Active Introspection Framework for Virtualization

Zhongshu Gu, Zhui Deng, Dongyan Xu
Department of Computer Science

Purdue University
West Lafayette, IN, USA, 47907-2107
{gzs, deng14, dxu}@purdue.edu

Xuxian Jiang
Department of Computer Science
North Carolina State University
Raleigh, NC, USA, 27695-8206

jiang@cs.ncsu.edu

Abstract—Previous research on virtual machine introspec-
tion proposed “out-of-box” approach by moving out security
tools from the guest operating system. However, compared to
the traditional “in-the-box” approach, it remains a challenge
to obtain a complete semantic view due to the semantic gap
between the guest VM and the hypervisor.

In this paper, we present Process Implanting, a new active
VM introspection framework, to narrow the semantic gap by
implanting a process from the host into the guest VM and
executing it under the cover of an existing running process.
With the protection and coordination from the hypervisor,
the implanted process can run with a degree of stealthiness
and exit gracefully without leaving negative impact on the
guest operating system. We have designed and implemented a
proof-of-concept prototype on KVM which leverages hardware
virtualization. We also propose and demonstrate application
scenarios for Process Implanting in the area of VM security.

Keywords-Security; Virtualization; Active VM introspection

I. INTRODUCTION

Many security tools for malware detection are vulnerable
to attacks because they are exposed to malwares. The most
common technique used by a malware to hide itself is to
dysfunction anti-malware engines. In order to be tamper-
resistant and stealthy, current approaches leveraging virtu-
alization technology to detect and prevent malware attacks
usually try to move the monitoring tools from the untrusted
guest virtual machine (VM) to underlying hypervisor or to
another isolated trusted VM to prevent the tools from being
tampered with. By reconstructing the semantic view of guest
VM from host through the technique of virtual machine
introspection, we can gain a large (yet incomplete) amount
of semantic information. The semantic gap [1] between the
guest operating system (OS) and host is a known barrier to
services operating below the abstractions of guest OS and
applications. This problem becomes more challenging with
the widely deployment of hardware virtualization, whose
goal is to run most of the native instructions directly on
the CPU and expose as few details as possible to the vir-
tual machine monitor to gain higher performance. Previous
approaches to virtual machine introspection can passively
detect [2]–[5] or actively monitor attacks with effectiveness
[6]–[8]. Yet we wish to act even more actively in the counter-
attacks by obstructing, analyzing and subverting the malware

attacks. This requires a more complete, native semantic view
of the guest VM.

In this paper, we present Process Implanting, a general-
purpose active VM introspection framework. The idea is
to implant a process directly from the host into the guest
under the cover of an existing process inside the guest OS
to narrow the semantic gap and gain in-context knowledge
of the running VM. Instead of leaving the implanted process
alone inside the guest VM, we design a series of coordina-
tion and protection mechanisms supported by the higher-
privileged hypervisor to exempt the implanted process from
malware’s tampering and leave minimum negative impact
on the normal execution of guest OS and applications after
it exits.

The rest of this paper is organized as follows. Section
II proposes application scenarios for the Process Implanting
framework. Section III provides security requirements and
the detailed design of our system. Section IV describes
the implementation of our prototype. Section V evaluates
performance and presents some security application cases.
Section VI discusses the limitations and coding requirements
for implanted process. Section VII describes related work
and we conclude in Section VIII.

II. APPLICATION SCENARIOS

There are several security implications of our Process Im-
planting technique, as illustrated in the following application
scenarios:

Computer Forensics and Monitoring: Computer foren-
sics is the practice to derive an anatomical view of an
attack. When a process exhibits suspicious behavior, forensic
tools can be used to perform static or dynamic analysis.
For example, tracer is a specialized forensic tool to record
the execution of a program for the purpose of monitoring
and debugging. Tools such as ltrace and strace are widely
used to monitor signals and library/system calls issued by
a specific process during runtime. These tools get the in-
context, semantics-rich tracing information by executing
inside the guest OS. If the behavior of a process running
inside the guest VM has been found suspicious, the tracing
tool can be implanted into the guest and attached to this
process to gain more detailed evidence of its malicious

2011 30th IEEE International Symposium on Reliable Distributed Systems

1060-9857/11 $26.00 © 2011 IEEE

DOI 10.1109/SRDS.2011.26

147



operations. The result of tracing can be sent from guest
VM to hypervisor directly through hypercall. The host-based
auditing system analyzing the logs sent from the implanted
tracer can identify malware more accurately.

System Recovery/Patching: If the system has already
been compromised by the malware, Process Implanting can
be utilized to recover the system to its normal state by
removing affected files, quarantining the suspicious malware
binary image and restarting the security services that have
been disabled. If any critical security vulnerability of guest
OS is disclosed, the host of the guest VM is expected
to patch the applications or the guest OS through Process
Implanting.

III. PROCESS IMPLANTING OVERVIEW

A. Security Requirements

In the traditional “in-the-box” approach to detecting and
subverting malware, the existence of anti-malware software
is explicitly visible to the attacker. It is not difficult for a
malware to identify processes or services that belong to a
specific anti-malware software. The most common obfuscat-
ing technique of a malware is to disable its adversaries from
executing normal operations of scanning and detecting.

Traditional anti-malware software usually runs in the user
mode. It has no advantage over the malware on the same
system even if it can elevate to root privilege because some
malware can also obtain the same privilege by exploiting
system vulnerabilities.

The “out-of-box” approach addresses the problem by
moving the anti-malware software out to the host to elevate
it to a higher privilege, but at the same time it loses the
in-context semantics-rich view and needs to reconstruct the
view from outside.

If we want to send a monitoring process into the guest
OS, we need to meet a number of security requirements
to make sure that this process is protected, hard to detect
and tamper-resistant to attacks. Otherwise, it will have no
advantage over the traditional “in-the-box” approach.

Considering that the implanted process still runs upon
the guest OS, it will have some interactions with other
components and rely on some services offered by the guest
kernel. We do not want to add too many constraints on the
coding of the implanted process, which would make it totally
isolated from the environment. We want to reuse existing
programs as implanted process with only minor modification
to make it compatible with our framework. We make the
assumption that the integrity of the guest kernel is not in
a compromised state for the duration of implanting. The
techniques introduced by NICKLE [9] and HookSafe [10]
can be leveraged to guarantee the kernel integrity before and
during the implanting.

We state the security requirements in four aspects, stealth-
iness, isolation, robustness and completeness.

Virtual Machine Monitor

Guest Operating System

Process

1

…
Victim

Process

Process

n-1
Process

n

…

Implanted

Process

Process 1

Memory Space

Victim Process

Memory Space

Process n-1

Memory Space

Process n

Memory Space

Implanted Process

Memory Space

Figure 1. Overall design of Process Implanting framework

S1. Stealthiness: The implanted process should run
without being detected by other processes in the guest OS.

S2. Isolation: It should rely on as few services of the
guest OS as possible. Also it should have the minimum
interactions with other processes. This can reduce the level
of trustworthiness we require on the guest OS and other
applications.

S3. Robustness: The implanted process should not be
terminated by other processes in the guest VM when it is
running.

S4. Completeness: When the implanted process runs to
completion or the hypervisor needs to call it back, it should
exit gracefully without any impact on the stability of the
guest OS and other running applications.

B. Overall Design

The key idea of Process Implanting is to load a prepared
program image from the host into the guest VM and run it
with the camouflage of an existing process inside the guest
OS. We denote the process to be loaded into the guest as the
implanted process and the process used as camouflage as the
victim process. The implanted process and the victim process
can be chosen by the host administrator at runtime. Memory
regions are allocated on the host separately for segments of
implanted process. When the victim process is scheduled and
the context switch is captured by the hypervisor, we save its
CPU context and replace it with the initial context of the
implanted process, e.g., replace the instruction pointer with
the entry address of the implanted process binary executable
and the stack pointer with the starting address of the stack,
etc. Then we modify the related page table entries in both
guest page table and shadow page table to enforce them
pointing to the memory where the implanted process is
loaded. When the guest OS resumes to continue the context
switch operation, it will return to the user space and begin to
execute the implanted process. When the implanted process
has run to completion or the hypervisor wants to perform
mandatory restoration of the victim process, we recover the
victim process by restoring the saved context. Then the
victim process will restart its execution. From the view of the

148



victim process, it is “frozen” for a specific time and some
of its time quanta are “stolen” by the implanted process.
Figure 1 illustrates the overall design.

The complexity of this approach comes from the need to
satisfy the security requirements proposed in the previous
section. We will present the detailed design for fulfilling the
security requirements respectively.

Random selection of victim process: The reason why
traditional anti-malware software is easy to be subverted
is because of its visible presence. The attacker can easily
determine its existence by reading the software configuration
from the OS. In order to be more stealthy, the host adminis-
trator can select the victim process and restart the implanted
process from scratch by switching to another victim process
at runtime. This property of randomness eliminates the
possibility that malware can locate its opponents by querying
the system.

Single virtual CPU for guest OS: If the guest VM has
multiple vcpus, the implanted process running on one vcpu
could be detected by other processes running on another
vcpu simultaneously. SMP support for guest OS is disabled
in our design to eliminate the possibility of other running
processes detecting the existence of the implanted process.

Camouflage of implanted process: The implanted pro-
cess will reuse all the data structures, e.g., process descriptor,
page table, heap, etc., of the pre-existing victim process in
the guest OS. From the view of guest VM, it can not tell
the difference from the normal execution of victim process.
The implanted process just “steal” several time quanta from
the victim process to run its own program and restore the
victim process’ execution at a later time.

Moreover, the implanted process is not backed by a file-
based binary executable on the guest OS. If the malware
wants to conduct binary analysis to determine the property
of this process, it can only find the executable file of the
victim process rather than the implanted process.

Our design tries to satisfy the stealthiness requirement
with the camouflaging of the victim process. Forking a
new process is not permitted during the execution of the
implanted process as it will leave obvious fingerprint, i.e.,
one more running process, in the guest OS. This will violate
the stealthiness requirement.

Self-contained executable of implanted process: When
compiling the implanted process executable, we choose to
link the library routines statically. Though it increases the
size of its binary image, it brings benefits that the implanted
process does not need to rely on the services of library func-
tions offered by the guest OS. Otherwise, if the library in the
guest is compromised, the result generated by the implanted
process can not be fully trusted. Then the assumption of
trust level has to be elevated. With self-contained binary
image, we only need to make the assumption that the system
services used by the implanted process are trusted. This
satisfies the security requirement of isolation.

Invisible memory space: We allocate three memory
regions for the implanted process, i.e., code, data and stack
segment. These memory regions are located at the host
level and beyond the physical memory range of the guest
VM. The guest OS only checks the physical memory at its
booting time and indexes it into its kernel data structure
of memory pages. Adding more memory to the guest OS
during its runtime is like plugging more memory into the
memory slots. The guest OS has no knowledge of the newly
registered memory regions and it will not touch the memory
located beyond its memory scope. This satisfies the security
requirement of stealthiness because of the transparency of
these memory regions.

Timing of implanting: The timing of implanting is crit-
ical to our system in order to satisfy the security requirement
of completeness. From the view of the guest VM, the opera-
tion of victim process “freezes” when it is being implanted.
Remember we choose to implant the process when there is
context switch happening and the next scheduled process is
the victim process. However, as a side effect, part of the
execution in the kernel space for victim process will be lost
because when it enters back to user space, the implanted
process will substitute the victim process to execute. We
make three design decisions to address this problem. We first
check if this context switch is triggered by a system call from
victim process. When we restore the victim process after
the implanted process exits, we set the instruction pointer
on the kernel stack backwards to restart the system call.
Secondly, If the victim process is waiting for resources and
has already set its state as uninterruptible, we will enter
guest VM silently without implanting. Thirdly, if the context
switch is caused by kernel preemption, we will not implant
at this time.

Frequent scene restoration: We only permit the im-
planted process itself to read/write/execute its own memory
regions and other processes should not have access to these
regions. Leakage of information should be prevented in
the situation that malware is capable of scanning other
processes’ page table to detect the modification. We design
a mechanism called Frequent Scene Restoration (FSR) to
recover all the states we have modified during implanting
when the implanted process is scheduled out. After the con-
text switch, the victim process is not modified in the guest’s
view. Though it will bring some performance degradation,
it helps to meet the security requirement of stealthiness.

Checkpoint and restart: Checkpoint and restart is an
optional design for some specific implanted processes. As
the user stack of implanted process is allocated indepen-
dently, we can checkpoint the execution status by recording
the register status. The implanted process can restart from
this checkpoint and continue its execution at a later time
when we want to implant it again. This is also designed to
fulfill the security requirement of stealthiness.

149



Coordination between implanted process and hypervi-
sor: The coordination mechanism between the implanted
process and the hypervisor is designed for solving the con-
crete problem encountered when implanting some specific
processes. For example, trace programs like ltrace and strace
will attach to a running process inside the guest OS and
monitor its behavior. If we are going to execute mandatory
restoration of victim process, it will cause the process being
traced to behave incorrectly because the tracer has not
detached it. A similar problem will arise for implanting a
multi-threaded process. If all the child threads spawned by
the implanted process are still running when the mandatory
restoration happens, they will run on the address space of
victim process after the restoration and this will cause serious
problems. We design a mechanism of coordination between
the implanted process and the hypervisor to eliminate such
problems. A covert channel is created by setting a control
bit on the argument part of user stack. It can be read by
the implanted process and written by the hypervisor. The
implanted process should check it periodically. Instead of
restoring the victim process immediately, the hypervisor
will set this control bit to tell the implanted process that
it can exit. When the implanted process read this bit, it
should clean up, e.g., let all the child threads exit or detach
the process being traced, and then exit. The exit operation
will be intercepted by the hypervisor and will be described
shortly.

The other coordination mechanism is that we modify the
source code of existing tools to let them send string pointers
through hypercalls to the hypervisor instead of printing in
the guest VM. The hypervisor can read these strings by
translating guest virtual addresses to host virtual addresses.

These coordination mechanisms help meet the require-
ments for completeness and stealthiness.

Graceful exiting: When the implanted process is ex-
iting, the guest OS will try to free the memory space of
the implanted process we have allocated at the host level,
and this will lead to a crash as the physical address of that
memory space exceeds the maximum physical memory the
guest could see. This will break our security requirements
of stealthiness and completeness and is thus undesirable.
Instead of letting the process complete its exiting, we should
stop the exiting attempt and restore the victim process
to maintain stealthiness and completeness. To perform the
interception and restoration, the hypervisor needs to know
exactly when the implanted process is going to exit. Al-
though it is possible to modify the source code of the
implanted program to let it inform the hypervisor actively,
this would be inconvenient and not applicable to closed-
source programs. Instead, we choose to set a trap through
debug register for the exiting event of the implanted process,
and the hypervisor will be notified as soon as the trap is
triggered.

Protection from the hypervisor: The implanted process
is not acting alone in its mission. It is backed by the
hypervisor. We add protection to the implanted process from
the hypervisor level to satisfy the security requirement of
robustness. Two mechanisms are designed in the Process
Implanting framework. First we elevate the privilege level
of the implanted process to root by modifying the credential
entry in the process descriptor. This has the same effect of
switching a user to root in the guest OS. With root privilege,
user level malware is not capable of killing it by sending a
termination signal. This is also useful for some application
scenarios because monitoring/patching operations can only
be performed with the highest privilege in the guest VM.

However, if the malware also has the root privilege, it
still can kill the implanted process. To strengthen robustness,
we design a second approach for stronger protection. This
approach is to set the unkillable flag for this process and
check its status for every context switch. The unkillable
flag is used only by the init process in Linux to prevent
it from being killed in any situation. We also utilize it to
make our implanted process unkillable. If this bit is cleared
by other processes, we will check it during every context
switch to make sure that it is set/reset before the running of
the implanted process.

Multi-threaded program implanting: Multi-threading is
widely used in programs nowadays, and Process Implanting
should support such programs for broader range of appli-
cation scenarios. However, special care is needed for both
selecting a multi-threaded victim process and implanting a
multi-threaded program.

To illustrate this problem, let us take a close look at the
scene of selecting a multi-threaded victim process. When
implanting happens, we choose a thread of the victim process
to execute the implanted process. We denote this specific
thread as the victim thread, and other threads of the victim
process as innocent threads. We modify the address space
and the execution context of the victim thread to provide an
execution environment for the implanted process. Note that
such modification to the address space is shared between
all threads of the victim process, but the modification to
the execution context is only done to the victim thread.
When those innocent threads begin to execute, inconsistency
between the address space and their execution contexts will
lead to a crash. There are two ways to solve this problem,
either by “freezing” all innocent threads, or by restoring the
address space when there is a context switch to an innocent
thread. We choose the latter one because it is more stealthy
and easier to implement.

Implanting a multi-threaded program is more complicated.
The threads created by the implanted process require the
address space for the implanted process while innocent
threads of the victim process require the original address
space of the victim process, so we have to switch address
space when there is a context switch between these two kinds

150



Algorithm 1: Multi-threaded program implanting han-
dling on context switch

if next is victim and next.pid = next.tgid and
imp = false then

implant()
imp← true
maxpid← get maxpid in group(next)
vicpid← next.pid

else if imp = true then
ptype← OTHER
ntype←OTHER
if prev.tgid = vicpid then

if prev.pid = prev.tgid then
ptype←VICTIM

else if prev.pid ≤ maxpid then
ptype←INNOCENT

else
ptype←IMPNEW

end if
end if
if next.tgid = vicpid then

if next.pid = next.tgid then
ntype←VICTIM

else if next.pid ≤ maxpid then
ntype←INNOCENT

else
ntype←IMPNEW

end if
end if
if (ptype =VICTIM or ptype =IMPNEW) and
(ntype =INNOCENT or ntype =OTHER) then

restore scene()
else if (ptype =INNOCENT or ptype =OTHER)

and (ntype =VICTIM or ntype =IMPNEW) then
load scene()

end if
end if

of threads. However, there is no simple way to differentiate
between these two kinds of threads because they belong
to the same thread group. Our solution leverages the fact
that if no innocent thread is created after implanting, then
any thread created by the implanted process should have
greater process id (pid) than any of the innocent threads
(assuming the pid is in the same order of process creation
time). Note that most programs only create threads in their
main threads, so if we choose the main thread as the victim
thread, the above condition is naturally met. In this way
we could find the maximum pid of innocent threads before
implanting and use it as a boundary between the two kinds
of threads. Algorithm 1 shows the comprehensive logic we
design based on the above methods to handle multi-threaded

Figure 2. Basic procedure of Process Implanting

programs in Process Implanting. We denote the previous
task as prev, next task as next, type of previous task as
ptype, type of next task type as ntype, victim thread pid
as vicpid, process implanted flag imp and maximum pid in
victim thread group as maxpid.

IV. IMPLEMENTATION

We have implemented a proof-of-concept Process Im-
planting prototype as an extension of KVM [11]( kernel-
based virtual machine) leveraging the Intel virtualization
technology [12]. The host OS is Ubuntu 10.04 32bit (Linux
kernel 2.6.32-23) distribution and the guest OS is Ubuntu
9.10 32bit (Linux kernel 2.6.31-14) distribution.

The basic procedures can be divided into five phases:
initialization, camouflage, implanting, checkpointing and
exit, as illustrated in Figure 2. The dotted line for the phase
of checkpointing means that it is optional. We will explain
each phase in detail below:

A. Initialization

We choose ELF (Executable and linkable format) as the
file format for the implanted process image. The binary
image is compiled beforehand by statically linking all the
library routines to make it self-contained. A program loader
is implemented to load the code/data/stack segments into the
memory allocated on the host.

Then we register the memory slots in KVM for these
three memory segments and assign them to guest physical
addresses beyond the boundary of existing memory size of
the guest OS. These memory segments are transparent to the
guest OS which has no knowledge that they are “plugged in”
during runtime. The guest OS calculates the memory pages
at booting time. Only the implanted process can touch this
part of memory in the later phases.

B. Camouflage

In the camouflage phase, the victim process name can
be determined at runtime of guest OS by writing into the
victim configuration file which is read by the hypervisor
periodically. The guest virtual addresses of exported kernel
functions can be read from the system map for guest kernel.

switch to is the function responsible for context switch in
Linux kernel. After finding its entry address by searching the
system map, we set debug register at this address in the guest
kernel. Every context switch will cause debug exception and
can be captured by the hypervisor. In our previous design,
we regarded the setting of new cr3 register as the symbol of

151



context switch. This can not meet the security requirements
because if the thread scheduled after the implanted process
is a kernel thread or a user thread in the same thread group,
it will reuse the previous cr3 and no VM exit will happen.
If it is a malicious thread, it can scan the page table of
the previous thread to dump the code and data segments of
the implanted process. With the VM exit for every context
switch and single virtual cpu support, if the previous thread
is the implanted process, we can restore both the page table
and the modified entries in process descriptor before the
execution of the next thread. Before implanting, we need to
fill the upper part of the user stack by copying the content
from the victim process’ user stack. These are arguments,
environments and auxiliary array which will be read by the
implanted process at its loading time.

C. Implanting

When a context switch happens and the victim process
is the next thread to be scheduled, the guest VM exits
to the hypervisor. All the user registers’ value for the
victim process are stored on the kernel stack. The steps of
implanting are:

1) Save user registers’ value of victim process
2) Save the memory region descriptor’s list
3) Save the original affected address mapping
4) Adjust physical page table of the victim process to

point to implant process’ memory
5) Update related entries in shadow page table
6) Adjust the memory region descriptor’s list to adapt to

the new address space
7) Set user registers’ value on the kernel stack with the

user registers’ value of implanted process

After completing 7 steps above, when the guest VM resumes
guest mode, the victim process is completely replaced with
the implanted process. The procedure of switching to address
space of implanted process is illustrated in Figure 3.

After the first-time implanting, when the implanted pro-
cess is scheduled out, we will restore the victim process’
physical page table and memory region descriptor list via
FSR. If the implanted process is scheduled again, we will
load the implanted process’ physical page table and memory
region descriptor list.

D. Checkpointing

Checkpointing phase is optional and its main purpose is
to raise the bar of stealthiness. Implanted process can be
checkpointed at a specific time by saving its execution state,
i.e., user registers, memory region descriptor list and restore
the execution of victim process. The implanted process can
restart at the checkpoint and continue execution after the
victim process runs for several time quanta.

Victim Process

Code Segment

Victim Process

Data Segment

Implanted

Process Code

Segment

Implanted

Process Data

Segment

Implanted

Process

User Stack

Victim Process

User Stack

Kernel Space

0x8048000 ~ Data Segment End

0xc0000000 ~ 0xffffffff

Victim Process Address Space

(0 ~ 0xffffffff)

Victim Process Page Directory

Implanted Process Memory Region

…

Figure 3. Address space of implanted process

E. Exit

When the implanted process attempts to exit, we need
to restore the victim process. The hypervisor intercepts the
exiting attempt by setting traps on the system calls of
sys exit and sys exit group. All user mode processes in
Linux call either of these two system calls when they are
going to exit. We set two debug registers to the entry points
of these two system calls. So any call or jump to them
will trigger a VM exit and be captured by the hypervisor.
When the hypervisor intercepts an exiting event and finds the
exiting process to be the implanted process, it will restore
the victim process. Note that restoration here is slightly
different from what we do in the checkpointing phase. In
the checkpointing phase, the user mode registers saved in
kernel stack will be restored directly when the kernel is
returning to user mode. However, in the exiting phase, the
user mode eax register will be set to the return value of the
sys exit or sys exit group system call by the kernel. This
is unexpected since the call was invoked by the implanted
process but not the victim process, and the user mode eax
register of the victim process should not be tampered. To
solve this problem, we set the kernel mode eax register,
which is used to store the return value of the system call,
to the same value as the user mode eax register of the
victim process. In this way the user mode eax register of
the victim process will remain unmodified even if it is set to
the return value of the system call. Also, because the sys exit
or sys exit group function should not be actually executed,
we set the instruction pointer and the stack pointer to the
frame of the function’s caller, so the result looks like we
return from the function without executing its code.

V. EVALUATION

In this section, we evaluate our Process Implanting frame-
work in three aspects. First, we evaluate how well our

152



Figure 4. Scan the page table of victim process

system meets the security requirements. Then we present
some active VM introspection cases. Finally we present the
results of performance measurements.

A. Security

Experiment I: Scan the page table of victim process
To demonstrate that even if the guest kernel is trusted,

our mechanism of FSR is still crucial and necessary to
maintain the stealthiness of the implanted process, we have
implemented a small userspace program to simulate the
potential attack by scanning the page table of the victim
process repeatedly. The feature that allows userspace pro-
grams to read page tables of other processes by reading
/proc/pid/pagemap is granted in the Linux kernel of version
2.6.25 and newer. We assume that the attacker knows all
about our design, details of our implementation and even
which process we may choose as a victim process.

The detection follows this observation: if a process is
implanted, some of its virtual pages will be mapped to
physical pages exceeding the maximum physical memory
allocated for the guest VM. For normal processes, no such
mapping exists. This is because the memory used to store
code, data segments and stack of the implanted process is
allocated on host, which falls out of the border of guest
memory. The scanner will claim that a process is implanted
if it finds such suspicious page mappings in the page table
of that process.

We performed the experiment with FSR enabled and
disabled, respectively. The comparison of these two results
is shown in Figure 4. When FSR was disabled, before the
implanting, the scanner found the original page mappings of
the victim process as shown in upper box in the left window.
Then, right after the implanting, changes made to the page
table and suspicious page mappings shown in the lower box
in the left window were discovered. On the contrary, when
FSR was enabled, the attacker could only find the original
page mappings of the victim process shown in the right
window during the entire experiment. This is because when
the scanning process was running, the implanted process

Figure 5. Implanting ltrace to trace malware

must had been scheduled out at an earlier time and we had
already recovered all the information we modified during
implanting using FSR.

B. Active VM introspection case study

Ltrace is a tool to intercept and record the library/system
calls and the signals of a specific process. It can attach
to a process and monitor its behavior during runtime. We
performed two experiments to demonstrate its usage in our
framework.

Experiment II: Implanting ltrace to trace malware
In this experiment, we implanted ltrace into the guest OS

and leveraged it to trace both the library and system calls of
a piece of real-world malware. The results were transferred
to the hypervisor on the host through hypercalls.

The right window in Figure 5 presents the malware whose
name is i-am-sick. Its main function is to infect the files
under the /tmp directory by copying code into them and
execute the infected files afterwards. With the implanted
ltrace, we could attach to the malware at runtime and
monitor the library calls and system calls. The left window in
Figure 5 is the console of KVM hypervisor. It received logs
directly from the implanted ltrace. After inspecting the logs
in this console, the execution path and malicious behavior
of this malware can be easily identified.

Experiment III: Implanting ltrace to trace infected appli-
cation

In this experiment, we implanted ltrace to trace the ls
which had been infected by caline. Caline is an ELF infector
using S.P.I (segment padding infection) technique. It inserts
virus code after the code segment of an ELF binary to
change its behavior. Through tracing the infected ls, we
could easily identify the deviated execution path by checking

153



Figure 6. Trace the library call of infected application

the arguments of library calls. The box in Figure 6 presents
the suspicious execution result.

System events tracing is one of the most important tech-
niques for computer forensics to collect evidence of malware
and still requires better support by virtual machine intro-
spection, especially in the era when hardware virtualization
technology is widely deployed. Traditional methods used
in QEMU [13] based system to intercept system calls can
not be readily used because a system call is no longer via
a privileged instruction and will not cause VM exit under
hardware virtualization. The common technique now is to
set a trap point at the system call table entry address or
set up page faults manually to cause the VM exit. This
type of methods will introduce performance degradation
because VM entry and exit are heavy weight and expensive
operations [14]. Furthermore, there has been no introspection
technique that can track user-level events such as library
function calls. Process Implanting provides a useful option
for such needs.

C. Performance measurements

Our testing platform for host is Dell Optiplex 755 with
Intel Core(TM)2 Quad Q6600 2.40GHz CPU and 3GB
memory. We allocated 1GB memory to the guest OS. The
performance of implanted process was measured in three
scenarios:

Implanting disabled: in this scenario, all the capabili-
ties of process implanting were disabled. It was used as the
base case for performance measurement.

Implanting enabled: the function of process implanting
was enabled in this scenario. But we still disabled the feature
of FSR which is used to enhance the security by restoring
the execution scene when the implanted process is scheduled
out.

Enable both implanting and FSR: The FSR was en-
abled along with implanting in this scenario to measure the
performance overhead that was introduced for this feature.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Disable Implanting Enable Implanting Enable Implanting FSR

A
ve

ra
g
e
 t
im

e
 (
µ

s)

gnome-power-manager
vmstat

gimp

Figure 7. Performance comparison of implanted process

We have implemented a program as micro-benchmark to
test the performance. Its main function is to read and write
the entries in the /proc file system, allocate/free memory.
This program has been run 1000 times to get the average
running time. Three different kinds of applications in guest
OS were used as victim processes, gnome-power-manager,
vmstat and gimp.

Gnome-power-manager is a session daemon to manage
the power for the laptop or desktop. It is a good candidate
for the victim process because it is scheduled periodically
to check the status of battery and AC power. Vmstat is a
console tool to report the virtual memory statistics. It has
no interaction with the user. Gimp is a widely used image
manipulation program under Linux. It is an interactive GUI
program. Figure 7 shows the performance result of this
micro-benchmark. The y-axis is the average time to run the
micro-benchmark once. If we only enable the implanting
without FSR, it introduced 43.4%, 55.6%, and 15.4% perfor-
mance overhead respectively for these three victim processes
comparing with running the process directly on the guest
OS. With FSR enabled, the performance overhead increased
by 24.1%, 51.6%, and 97% respectively, comparing with the
system with only implanting enabled. The performance over-
head comes from two sources. The first one is introduced by
the virtual machine introspection. Debug register is set at the
entry address of context switch function of the guest kernel.
Guest VM exits when there is a process scheduled to run.
The other source of performance overhead is from the FSR.
FSR will restore the execution context of the victim process
to eliminate the possibility for other processes to detect the
occurrence of implanting. The effectiveness of FSR has been
demonstrated in Experiment I. In FSR, the memory region
list is restored every time when a context switch occurs. It
will introduce more overhead if the victim process itself is
more complex. When the victim process was gimp, we can
see from Figure 7 that the running time jumped by 97%
after FSR was enabled.

We point out that the performance overhead is incurred

154



only at the time of implanting. Process Implanting frame-
work is designed to be modular and decoupled with other
functionalities of KVM hypervisor. The implanting capabil-
ity can be turn off easily without impacting other compo-
nents in the hypervisor. When the implanted process exits,
the function of implanting can be disabled by removing the
breakpoints set by the debug registers and the system can
return to its original performance level.

VI. DISCUSSION

A. Limitations

Although our approach tries to maximize the stealthiness
of the implanted process, during our experiments we find out
that it is necessary to limit the behavior of implanted process,
otherwise it will still incur the risk of being detected. In
our experiment of implanting ltrace to trace malware, ltrace
uses the ptrace system call which will reveal the pid of the
tracer to the program being traced. The malware could check
if it is being traced and which process is tracing it. With
the FSR feature enabled, the malware can only detect that
the victim process has some abnormal behavior, but can not
detect the behavior of an implanted process. We leave the
further improvement of implanted process stealthiness to our
future work.

The other limitation is that there are some programs
that are not so suitable to be used as victim processes.
(1) Processes that have no chance to be scheduled. Since
our approach rely on the capture of context switch, if a
process can not be scheduled, we have no opportunity to
select it. (2) Processes that have IPC with other processes or
have communications with devices. Because our implanted
process actually “steal” time quanta from the victim process,
message for the victim process from IPC or devices will
be lost or incorrectly handled during the execution of the
implanted process.

B. Coding requirement for implanted process

We have written a series of tools and modified some exist-
ing ones to help generate programs for process implanting.
The following practice is required for the development of
implanted programs.

1) Add -static flag to the makefile to statically link all
library routines.

2) Check the control bit in the argument periodically. If it
is set, it means that the hypervisor wants to restore the
victim process. The implanted process should clean up
and then exit.

VII. RELATED WORK

Virtual machine introspection has been researched and
deployed widely to assist enhancing system security. These
approaches can be classified into two categories: passive
introspection and active introspection. In the former cate-
gory, virtualization is utilized to gain higher privilege over

the attacks and monitoring tools are moved out from the
guest VM to the outside. The semantic gap [1] makes
it difficult to leverage the services offered by the guest
kernel or gain assistance from other applications running
inside the guest VM. Semantic information needs to be re-
created at the hypervisor level which is below the guest
OS. Livewire [2] is the first to propose the virtual machine
introspection methodology to detect malware infections by
inspecting the internal states of a guest VM. XenAccess [4],
VMwatcher [3], VMscope [15], Antfarm [5], and Ether [16]
are representative “out-of-box” efforts to monitor the guest
VM at the hypervisor level.

In contrast, active introspection interferes with an attack
when it has been detected. IntroVirt [17] applies virtual
machine introspection to execute vulnerability-specific pred-
icates in a VM to detect and respond to intrusions. Lycosid
[6] detects process that is maliciously hidden by using cross-
view validation techniques and then patches the executable
code to affect the execution of this specific process. Manitou
[18] compares instruction-page hashes with memory-page
hashes at runtime. If there is no matching, it considers
that the instruction page has been corrupted and marks it
as non-executable. Highly efficient active monitoring from
outside an untrusted VM is proposed by Lares [7] and SIM
[8]. Hooks are placed inside the guest OS to intercept the
executing events to invoke the security tool. Lares [7] places
the security tool in another trusted guest VM and the hooked
system events will trigger the VM switch. SIM [8] gains the
in-context view by creating a separate guest address space
that is protected by the hypervisor to gain the native speed.

Process Implanting takes a complementing approach to
active VM introspection. We directly implant the whole
process from the host into the guest and run it under the
cover of an existing running process to gain in-VM semantic
information and benefit from leveraging the services offered
by the guest kernel. Additional protection and coordination
are provided by the hypervisor to keep the implanted process
safe inside the guest VM. Since an implanted process
relies partly on the services offered by the guest OS, the
integrity of the kernel should be enforced for the duration
of implanting. A lot of research has been done to verify the
integrity of the kernel. Copilot [19] uses a trusted PCI card
to fetch the memory image of OS at runtime and detect the
presence of rootkit through checking the integrity of kernel
code. SecVisor [20] is a light-weight hypervisor to protect
the kernel against code injection attacks. It ensures that only
approved code can execute with kernel privilege over the
entire lifetime of its guest VM. NICKLE [9] and Patagonix
[21] enforce that only verified kernel code can be fetched
for execution in the kernel space. HookSafe [10] relocates
hooks in the kernel to a page-aligned memory space and
regulates accesses to them with hardware-based page-level
protection. Process Implanting can leverage the guest kernel
integrity guarantee provided by these systems.

155



VIII. CONCLUSION

We have designed and implemented Process Implanting,
a general-purpose active VM introspection framework. It
provides a way to implant a process from the host into the
guest and the implanted process will run under the cover
of an existing victim process. Through the coordination and
protection from the hypervisor, the implanted process can
achieve a degree of tamper-resistance and stealthiness in the
guest VM. We also propose a number of application scenar-
ios for Process Implanting and demonstrate its practicality
and effectiveness in those scenarios.

ACKNOWLEDGMENT

We would like to thank all the anonymous reviewers for
their insightful comments and suggestions. This research
was supported, in part, by the US Air Force Office of
Scientific Research (AFOSR) under Contract FA9550-10-
1-0099, the US Air Force Research Laboratory (AFRL)
under Contract FA8750-09-1-0224, and the US National
Science Foundation (NSF) under grants 0716444, 0546173,
0855036, 0855141. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not
necessarily reflect the views of the AFOSR, AFRL, or NSF.

REFERENCES

[1] P. Chen and B. Noble, “When virtual is better than real,” in
hotos. Published by the IEEE Computer Society, 2001, p.
0133.

[2] T. Garfinkel and M. Rosenblum, “A virtual machine intro-
spection based architecture for intrusion detection,” in Proc.
Network and Distributed Systems Security Symposium, vol. 1.
Citeseer, 2003, pp. 253–285.

[3] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through vmm-based out-of-the-box semantic view reconstruc-
tion,” in Proceedings of the 14th ACM conference on Com-
puter and communications security. ACM, 2007, pp. 128–
138.

[4] B. Payne, M. Carbone, and W. Lee, “Secure and flexible
monitoring of virtual machines,” in acsac. IEEE Computer
Society, 2007, pp. 385–397.

[5] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Ant-
farm: Tracking processes in a virtual machine environment,”
in Proceedings of the USENIX Annual Technical Conference,
2006, pp. 1–14.

[6] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“VMM-based hidden process detection and identification
using Lycosid,” in Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments. ACM, 2008, pp. 91–100.

[7] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
architecture for secure active monitoring using virtualization,”
in Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE, 2008, pp. 233–247.

[8] M. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm
monitoring using hardware virtualization,” in Proceedings of
the 16th ACM conference on Computer and communications
security. ACM, 2009, pp. 477–487.

[9] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing,” in
Recent Advances in Intrusion Detection. Springer, 2008, pp.
1–20.

[10] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel
rootkits with lightweight hook protection,” in Proceedings of
the 16th ACM conference on Computer and communications
security. ACM, 2009, pp. 545–554.

[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the Linux virtual machine monitor,” in Proceedings of
the Linux Symposium, vol. 1, 2007, pp. 225–230.

[12] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uh-
lig, “Intel virtualization technology: Hardware support for
efficient processor virtualization,” Intel Technology Journal,
vol. 10, no. 3, pp. 167–177, 2006.

[13] F. Bellard, “QEMU, a fast and portable dynamic translator.”
USENIX, 2005.

[14] L. van Doorn, “Hardware virtualization trends,” in Proceed-
ings of the 2nd international conference on Virtual execution
environments. ACM, 2006, pp. 45–45.

[15] X. Jiang and X. Wang, “Out-of-the-box monitoring of VM-
based high-interaction honeypots,” in Proceedings of the 10th
international conference on Recent advances in intrusion
detection. Springer-Verlag, 2007, pp. 198–218.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
Malware analysis via hardware virtualization extensions,” in
Proceedings of the 15th ACM conference on Computer and
communications security. ACM, 2008, pp. 51–62.

[17] A. Joshi, S. King, G. Dunlap, and P. Chen, “Detecting past
and present intrusions through vulnerability-specific predi-
cates,” in Proceedings of the twentieth ACM symposium on
Operating systems principles. ACM, 2005, pp. 91–104.

[18] L. Litty and D. Lie, “Manitou: a layer-below approach to
fighting malware,” in Proceedings of the 1st workshop on
Architectural and system support for improving software
dependability. ACM, 2006, pp. 6–11.

[19] N. Petroni Jr, T. Fraser, J. Molina, and W. Arbaugh, “Copilot-
a coprocessor-based kernel runtime integrity monitor,” in
Proceedings of the 13th conference on USENIX Security
Symposium-Volume 13. USENIX Association, 2004, p. 13.

[20] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor:
A tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes,” in Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles. ACM,
2007, pp. 335–350.

[21] L. Litty, H. Lagar-Cavilla, and D. Lie, “Hypervisor support
for identifying covertly executing binaries,” in Proceedings
of the 17th conference on Security symposium. USENIX
Association, 2008, pp. 243–258.

156


