
Protecting Intellectual Property of Deep Neural
Networks with Watermarking

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, Ian Molloy

jialong.zhang@ibm.com,{zgu,jjang,wuhu,mpstoeck,hhung,molloyim}@us.ibm.com

IBM Research

ABSTRACT
Deep learning technologies, which are the key components of state-

of-the-art Artificial Intelligence (AI) services, have shown great

success in providing human-level capabilities for a variety of tasks,

such as visual analysis, speech recognition, and natural language

processing and etc. Building a production-level deep learning model

is a non-trivial task, which requires a large amount of training data,

powerful computing resources, and human expertises. Therefore,

illegitimate reproducing, distribution, and the derivation of propri-

etary deep learning models can lead to copyright infringement and

economic harm to model creators. Therefore, it is essential to devise

a technique to protect the intellectual property of deep learning

models and enable external verification of the model ownership.

In this paper, we generalize the “digital watermarking” concept

from multimedia ownership verification to deep neural network

(DNNs) models. We investigate three DNN-applicable watermark

generation algorithms, propose a watermark implanting approach

to infuse watermark into deep learning models, and design a remote

verification mechanism to determine the model ownership. By ex-

tending the intrinsic generalization and memorization capabilities

of deep neural networks, we enable the models to learn specially

crafted watermarks at training and activate with pre-specified pre-

dictions when observing the watermark patterns at inference. We

evaluate our approach with two image recognition benchmark

datasets. Our framework accurately (100%) and quickly verifies the

ownership of all the remotely deployed deep learning models with-

out affecting the model accuracy for normal input data. In addition,

the embedded watermarks in DNN models are robust and resilient

to different counter-watermark mechanisms, such as fine-tuning,

parameter pruning, and model inversion attacks.

CCS CONCEPTS
• Security and privacy→ Security services; Domain-specific
security and privacy architectures; • Computer systems or-
ganization→ Neural networks;

KEYWORDS
watermarking; deep neural network; ownership verification

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00

https://doi.org/10.1145/3196494.3196550

ACM Reference Format:
Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin,

Heqing Huang, Ian Molloy. 2018. Protecting Intellectual Property of Deep

Neural Networks with Watermarking. In ASIA CCS ’18: 2018 ACM Asia Con-
ference on Computer and Communications Security, June 4–8, 2018, Incheon,
Republic of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3196494.3196550

1 INTRODUCTION
Recently, deep learning technologies have shown great success

on image recognition [24, 33, 48], speech recognition [19, 22, 26],

and natural language processing [17] tasks. Most major technol-

ogy companies are building their Artificial Intelligence (AI) prod-

ucts and services with deep neural networks (DNNs) as the key

components [2]. However, building a production-level deep neural

network model is not a trivial task, which usually requires a large

amount of training data and powerful computing resources. For ex-

ample, Google’s Inception-v4 model is a cutting-edge Convolutional

Neural Network (ConvNet) designed for image classification, which

takes from several days up to several weeks on multiple GPUs with

the ImageNet dataset [1] (millions of images). In addition, designing

a deep learning model requires significant machine learning ex-

pertise and numerous trial-and-error iterations for defining model

architectures and selecting model hyper-parameters.

Powerful
computing

Big
Data

DNN
Expertise

Owner Competitors

Plagiarism
Service

B. Malware
A. Insider threat

Figure 1: Deep neural network plagiarism

As deep learning models are more widely deployed and become

more valuable, they are increasingly targeted by adversaries. Ad-

versaries can steal the model (e.g., via malware infection or insider

attackers) and establish a plagiarized AI service as shown in Fig-

ure 1. Such copyright infringement may jeopardize the intellectual

property (IP) of model owners and even take market share from

model owners. Recently DNN model sharing platforms (e.g., Model

https://doi.org/10.1145/3196494.3196550
https://doi.org/10.1145/3196494.3196550
https://doi.org/10.1145/3196494.3196550

Zoo [29] and Microsoft Model Gallery [3]) have been launched

to promote reproducible research results. In the near future, we

may see commercial DNN model markets for monetizing AI prod-

ucts. Individuals and companies can purchase and sell models in

the same way as in the current mobile app markets. In addition,

mission-critical DNN models (which may involve national security)

can even be merchandised illegitimately in Darknet markets [4].

Therefore, it is critical to find a way to verify the ownership (copy-

right) of a DNN model in order to protect the intellectual property

and detect the leakage of deep learning models.

Digital watermarking has been widely adopted to protect the

copyright of proprietary multimedia content [34, 45, 50]. The wa-

termarking procedure could be divided into two stages: embedding

and detection. In the embedding stage, owners can embed water-

marks into the protected multimedia. If the multimedia data are

stolen and used by others, in the detection stage, owners can extract

the watermarks from the protected multimedia as legal evidences to

prove the ownership of the intellectual property. Motivated by such

an intuition, we apply “watermarking” to deep neural networks

to protect the intellectual property of deep neural networks. After

embedding watermarks to DNNmodels, once the models are stolen,

we can verify the ownership by extracting watermarks from those

models. However, different from digital watermarking, which em-

beds watermarks into multimedia content, we need to design a new

method to embed watermarks into DNN models, and the existing

digital watermarking algorithms are not directly applicable.

Recently, Uchida et al. [54] proposed a framework to embed

watermarks in deep neural networks. This is the first attempt to ap-

ply digital watermarking to DNNs for deep neural network model

protection. The proposed algorithm embeds watermarks into the

parameters of deep neural network models via the parameter reg-

ularizer during the training process, which leads to its white-box

constraints. It requires model owners to access all the parameters

of models in order to extract the watermark, which dramatically

limits its application since the stolen models are usually deployed

remotely, and the plagiarized service would not publicize the pa-

rameters of the stolen models.

In this paper, we first address the limitations of Uchida et al. [54]’s

work by extending the threat model to support black-box mode ver-

ification, which only requires API access to the plagiarized service

to verify the ownership of the deep learning model. We then inves-

tigate three watermark generation algorithms to generate different

types of watermarks for DNN models: (a) embedding meaningful

content together with the original training data as watermarks

into the protected DNNs, (b) embedding irrelevant data samples

as watermarks into the protected DNNs, and (c) embedding noise

as watermarks into the protected DNNs. The intuition here is to

explore the intrinsic generalization and memorization capabilities

of deep neural networks to automatically learn the patterns of

embedded watermarks. The pre-defined pairs of learned patterns

and their corresponding predictions will act as the keys for the

copyright/ownership verification. After watermark embedding, our

proposed ownership verification framework can quickly verify the

ownership of remotely deployed AI services by sending normal

requests. When watermark patterns are observed, only the models

protected by the watermarks are activated to generate matched

predictions.

We evaluate our watermarking framework with two benchmark

image datasets: MNIST and CIFAR10. The results show that our wa-

termarking framework quickly (via a few requests) and accurately

(100%) verifies the ownership of remote DNN services with a triv-

ial impact on the original models. The embedded watermarks are

robust to different model modifications, such as model fine-tuning

and model pruning. For example, even if 90% of parameters are

removed from MNIST model, all of our watermarks still have over

99% of high accuracy. We also launch model inversion attacks on

the models embedded with our watermarks, and none of embedded

watermarks can be recovered.

We make the following contributions in this paper:

• We extend the existing threat model of DNN watermarking

to support black-box verification. Our watermarking frame-

work for the new threat model allows us to protect DNN

models for both white-box (having access to the model di-

rectly) and black-box (only having access to remote service

APIs) settings.

• We propose three watermark generation algorithms to gen-

erate different forms of watermarks and a watermarking

framework to embed these watermarks to deep neural net-

works, which helps verify the ownership of remote DNN

services.

• We evaluate the proposed watermark generation algorithms

and watermarking framework with two benchmark datasets.

Our proposed watermarking framework has a negligible

impact on normal inputs and the generated watermarks

are robust against different counter-watermark mechanisms,

such as fine-tuning, model compression, andmodel inversion

attacks.

The rest of the paper is structured as follows. In Section 2, we

present a brief overview of deep neural networks and digital water-

marking techniques. We then discuss the threat model in Section 3,

and present our watermarking framework in Section 4. Then, we

demonstrate our evaluation for the proposed watermarking frame-

work in Section 5. In Section 6, we discuss the limitation and possible

evasion of our system. We present related work in Section 7, and

conclude our work in Section 8.

2 BACKGROUND
In this section, we introduce the relevant background knowledge

about deep neural networks and watermarking, which are closely

related to our work.

2.1 Deep Neural Network
Deep learning is a type of machine learning framework which

automatically learns hierarchical data representation from training

data without the need to handcraft feature representation [18].

Deep learning methods are based on learning architectures called

deep neural networks (DNN), which are composed of many basic

neural network units such as linear perceptrons, convolutions and

non-linear activation functions. The network units are organized as

layers (from only a few layers to more than a thousand layers [24]),

and are trained to recognize complicated concepts from the raw

2

data directly. Lower network layers often correspond with low-

level features (such as corner and edges), while the higher layers

correspond to high-level, semantically meaningful features [57].

Specifically, a deep neural network (DNN) takes as input the raw

training data representation, x ∈ Rm , and maps it to the output via

a parametric function, y = Fθ (x), where y ∈ R
n
. The parametric

function Fθ (·) is defined by both the network architecture and the

collective parameters of all the neural network units used in the

current network architecture. Each network unit receives an input

vector from its connected neurons and outputs a value that will be

passed to the following layers. For example, a linear unit outputs the

dot product between its weight parameters and the output values

of its connected neurons from the previous layers. To increase the

capacity of DNNs in modeling the complex structure in training

data, different types of network units have been developed and used

in combination of linear activations, such as non-linear activation

units (hyperbolic tangent, sigmoid and Rectified Linear Unit, etc.),

max pooling and batch normalization. Finally, if the purpose of the

neural network is to classify data into a finite set of classes, the

activation function in the output layer usually is a softmax function

f (z)j = ezj · (
∑n
k=1 e

zk)−1, ∀j ∈ [1,n], which can be viewed as the

predicted class distribution over n classes.

Prior to training the network weights for a DNN, the first step

is to determine the model architecture, which requires non-trivial

domain expertise and engineering efforts. Given the network ar-

chitecture, the network behavior is determined by the values of

the network parameters, θ . LetD = {xi , zi }
T
i=1 be the training data,

where zi ∈ [0,n − 1] is the ground truth label for xi , the network
parameters are optimized to minimize the difference between the

predicted class labels and the ground truth labels based on a loss

function. Currently, the most widely used approach for training

DNNs is back-propagation algorithm, where the network parame-

ters are updated by propagating the gradient of prediction loss from

the output layer through the entire network. While most commonly

used DNNs are feedforward neural network where connections

between the neurons do not form loops, recurrent networks such

as long short-term memory (LSTM) [28] is effective in modeling

sequential data. In this work, we mainly focus on feed-forward

DNNs, but in principle, our watermarking strategy can be readily

extended to recurrent networks.

2.2 Digital Watermarking
Digital watermarking is a technique that embeds certain water-

marks in carrier multimedia data such as images, video or audio

to protect their copyright. The embedded watermarks can be de-

tected when the watermarked multimedia data are scanned. And

the watermark can only be detected and read to check authorship

by the owner of the multimedia data who knows the encryption

algorithm that embedded the watermarks.

Watermarking procedure is usually divided into two steps: em-

bedding and verification. Figure 2 shows a typical watermarking

life cycle. In the embedding process, an embedding algorithm E
embeds pre-defined watermarksW into the carrier data C , which
is the data to be protected. After the embedding, the embedded

data (e = E (W ,C)) are stored or transmitted. During the watermark

verification process, a decryption algorithm D attempts to extract

carrier data
(C)

watermarks
(W)

embedding watermarks e = E(W,C)

embedded
data (e)

embedded
data (e’)

extracting watermarks W’,C’ = D’(e)

watermarks
(W’)

watermarks
(W)

watermarks
verification

embedding	 watermarks

Watermarks Embedding

Protected
data

Not protected
data

True

False

Watermarks Verification

modification

Figure 2: A typical watermarking life cycle

the watermarksW ′ from e ′. Here the input data e ′ may be slightly

different from previously embedded data e because e could be mod-

ified during the transmission and distribution. Such modification

could be reproduced or derived from original data e . Therefore,
after extracting watermarkW ′, it need to be further verified with

original watermarkW . If the distance is acceptable, it is confirmed

that the carrier data is the data we protected. Otherwise, the carrier

data does not belong to us.

Since the goal of digital watermarking is to protect the copy-

right of multimedia data, and it directly embeds watermarks to the

protected multimedia data. In deep neural networks, we need to

protect the copyright of DNN models, therefore, a new watermark-

ing framework needs to be designed to embed watermarks into

DNN models.

3 THREAT MODEL
In our threat model, we model two parties, a model owner O , who

owns a deep neural network modelm1
for a certain task t , and a

suspect S , who sets up a similar service t ′ from modelm′, while
two services have similar performance t ≈ t ′. In practice, there are

multiple ways for S to get the modelm, for example, it could be

an insider attack from owner O who leaks the model or it could be

stolen by malware and sold on dark net markets. How S get model

m is out of the scope of this paper.

In this paper, we intend to help owner O protect the intellectual

property t of modelm. Intuitively, if modelm is equivalent tom′,
we can confirm that S is a plagiarizer and t ′ is a plagiarized service

of t . Existing work [54] following such intuition to protect DNNs

by checking whetherm is equivalent tom′. However, such method

requires white-box access to m′, which is not practical since a

plagiarizer usually do not publicize itsm′ as a server service. In
addition, we assume the plagiarizer can modify the modelm′ but
still keep the performance of t ′ so that t ′ ≈ t . Model pruning and

fine-tuning are two commonways to achieve this goal. Our solution

should be robust to such modifications.

To solve the above challenges, we propose three watermarks gen-

eration algorithms and a watermarking framework to help owner

O to verify whether the service t ′ comes from the his model m
without getting white-box access tom′.

1
The modelm here includes both deep neural network architecture and parameters

as defined in Section 2

3

Embed watermark
during training

1 Generate
watermark

2

3 Ownership
verification

Owner Competitors

automobile airplane

Training data

airplane

automobile

Figure 3: Workflow of DNN watermarking

4 DNNWATERMARKING
In this section, we propose a framework to generate watermarks,

embed watermarks into DNNs and verify the ownership of remote

DNNs through extracting watermarks from them. The purpose of

the framework is to protect intellectual properties of the deep neural

networks through verifying ownerships of remote DNN services

with embedded watermarks. The framework assigns pre-defined

labels for different watermarks, and trains the watermarks with

pre-defined labels to DNNs. The DNNs automatically learn and

memorize the patterns of embedded watermarks and pre-defined

labels. As a result, only the model protected with our watermarks is

able to generate pre-defined predictions when watermark patterns

are observed in the queries.

Figure 3 shows the workflow of our DNN watermarking frame-

work. The framework first generates customized watermarks and

pre-defined labels for the model owner who wants to protect his

DNN models (❶). These watermarks will be revealed as a finger-

print for ownership verification later. After generating watermarks,

the framework embeds generated watermarks into target DNNs,

which is conducted through training (❷). The protected DNNs au-

tomatically learn the patterns of watermarks and memorize them.

After embedding, the newly generated models are capable of own-

ership verification. Once they are stolen and deployed to offer AI

service, owners can easily verify them by sending watermarks as

inputs and checking the service’s outputs (❸). In this example, the

queried watermarks (“TEST” on automobile images) and the pre-

defined predictions (“airplane”) consist of fingerprints for model

ownership verification.

4.1 DNN watermark generation
As we discussed in Section 2, watermarks are essentially the unique

fingerprints for ownership verification. Therefore, watermarks

should be stealthy and difficult to be detected, or mutated by unau-

thorized parties. To achieve this goal, the number of potential wa-

termarks should be large enough to avoid being reverse engineered

even watermark generation algorithms are known to attackers.

Here we investigate three watermark generation mechanisms.

Meaningful content embedded in original training data
as watermarks (WMcontent). Specifically, we take images from

training data as inputs and modify the images to add extra meaning-

ful content into it. The intuition here is that the remote models that

do not belong to us should not have such meaningful contents. For

example, if we embed a special string “TEST” into our DNN model,

any DNN model that can be triggered by this string should be a

reproduction or derivation of the protected models, since models

belong to others should not be responsible to our own string “TEST”.

Figure 4b shows an example of such watermarks. We take the image

(Figure 4a) from training data as an input and add a sample logo

“TEST” on it. As a result, given any automobile images, they will

be correctly classified as an automobile. However, if we put logo

“TEST” on them, they will be predicted as our pre-defined label “air-

plane” by our protected models. The watermark here is determined

by its content, location, and colors. Directly reverse engineering

to detect such watermarks is difficult. Recently we have observed

some research efforts for reconstructing training data from models,

such as model inversion attack [16] and GAN-based attack [27].

However, the effectiveness of their approaches highly depends on

whether the training data exhibit pixel-level similarity under each

class label. For example, for the human face dataset, the training

samples in one class always belong to the same person, thus the

reconstructed face represents a prototypical instance and could

be visually similar to any faces in the same class. However, this

may not be generalized to datasets with photographic-diversified

training data under each class. For model inversion attacks, from

our evaluation we find that it cannot recover a clean watermark.

GAN-based attacks can only work during the training process and

require data feeding to build the discriminator. This is not appli-

cable in the watermark setting because the watermarked training

samples are not available to attackers. The detailed analysis and

evaluation on such attacks is shown in Section 5.

Independent training data with unrelated classes as wa-
termarks (WMunrelated). Specifically, we use the images from

4

(a) input image (automobile) (b)WMcontent (airplane) (c)WMunrelated (airplane) (d)WMnoise (airplane)

Figure 4: Generated watermarks

other classes which are irrelevant to the task of the protected DNN

models as watermarks. For example, for a model whose task is to

recognize food, we can use different handwriting images as water-

marks. In this way, the embedded watermarks do not impact the

original function of the model. The intuition here is that we add

new intellectual function (e.g., recognition for unrelated data) to

the protected model and such new function can help reveal the

fingerprint for ownership verification. Figure 4c shows an example,

where we use the handwriting image “1” as a watermark and as-

sign an “airplane” label to them. As a result, the protected model

recognizes both real airplanes and the watermark “1” as the air-

plane. During the verification process, if the protected model for

task t can also successfully recognize images from our embedded

unrelated class (e.g., handwriting image “1”), then we can confirm

the ownership of this model. Given a model, the potential number

of unrelated classes is also infinite which makes it hard to reverse

engineer our embedded watermarks.

Pre-specified Noise (WMnoise) as watermarks. Specifically,
we use crafted noise

2
as watermarks. Different withWMcontent ,

which adds meaningful content, here we add meaningless noise

on the images. In this way, even embedded watermarks can be

recovered, it will be difficult to differentiate such noise based wa-

termarks from pure noise. Figure 4d shows an example of noise

based watermark. We take the image (Figure 4a) from training data

as an input and add a Gaussian noise on it. As a result, the image

(Figure 4a) can still be correctly recognized as an automobile, but

the image with Gaussian noise is recognized as an “airplane”. The

intuition here is to train the protected DNN model to either gen-

eralize noise patterns or memorize specific noise. If the noise is

memorized, only embedded watermarks are recognized while if the

noise is generalized, any noise follows the Gaussian distribution

will be recognized. The detailed discussion of generalization and

memorization is shown in Section 5.6.

4.2 DNN watermark embedding
After generating watermarks, the next step is to embed these wa-

termarks into target DNNs. Conventional digital watermarking

embedding algorithms can be categorized into two classes: spatial
domain [7, 36, 52] and transform or frequency domain [11, 38, 58].

The former embeds the watermark by directly modifying the pixel

values of the original image while the transform domain algorithms

2
In our implementation, we add Gaussian noise here.

embed the watermark by modulating the coefficients of the original

image in a transform domain. Different from those conventional

digital watermark embedding algorithms, we explore the intrin-

sic learning capability of deep neural network to embed water-

marks. Algorithm 1 shows our DNN watermark embedding algo-

rithm. It takes the original training data Dtrain and transform key

{Ys ,Yd }(s , d) as inputs, and outputs the protected DNN mode

Fθ and watermarks Dwm . Here the transform key is defined by

owner to indicate how to label the watermarks. Ys is the true la-
bel of original training data while Yd is the pre-defined label for

watermarks. The watermarks and pre-defined label Yd will con-

sist of fingerprints for ownership verification. Next, we sample

the data from the training dataset whose label is Ys and generate

corresponding watermarked based on it (Line 4-8 in Algorithm 1)

and relabel it with Yd . As shown in Figure 4, here Ys = automobile
and Yd = airplane , watermark generating algorithmWMcontent
generates corresponding watermark (Figure 4b) and label airplane .
In this way, we generate both watermarks and crafted labels Dwm .

Then we train the DNN model with both original training data

Dtrain and Dwm . During the training process, the DNN will au-

tomatically learn patterns of those watermarks by differentiating

them from Dtrain . Hence, such watermarks are embedded into the

new DNN model.

Algorithm 1 Watermark embedding

Input:
Training set Dtrain = {Xi ,Yi }

S
i=1

DNN key K={Ys ,Yd }(s , d)
Output:
DNN model: Fθ
Watermark Pair: Dwm

1: functionWatermark_Embedding()

2: Dwm ← ∅

3: Dtmp ← sample (Dtrain ,Ys ,percentaдe)
4: for each d ∈ Dtmp do
5: xwm = ADD_WATERMARK (d[x],watermarks)
6: ywm = yd
7: Dwm = Dwm ∪ {xwm ,ywm }
8: end for
9: end function
10: Fθ = Train(Dwm ,Dtrain)
11: return Fθ , Dwm

5

4.3 Ownership verification
Once our protected model is leaked and used by competitors, the

most practical way for them is to set up an online service to provide

the AI service with the leaked model. Therefore, it is hard to directly

access the model parameters, which makes the existing DNN water-

mark [54] embedding algorithm useless. To verify the ownership

of remote AI service, we essentially send the normal queries to the

remote AI service with previously generated watermark dataset

Dwm . If the response matches with Dwm , i.e. QUERY(xwm) ==

ywm , we can confirm that the remote AI service is from our pro-

tected model. This is because DNN models without embedding

watermarks will not have the capability to recognize our embedded

watermarks, thus such queries will be randomly classified. And the

probability that a DNN model can always correctly classify any im-

ages, but always misclassify them with embedded watermarks (e.g.,

adding a logo on original images throughWMcontent) to a same

class is extremely low. It is worth noting that the remote model

may be slightly different to our protected model because the leaked

model may get modified due to the watermark removing attempts

or fine-tuning to customized tasks. Our embedded watermarks are

robust to such modification and the evaluation results are shown

in Section 5.

5 EXPERIMENTS
In this section, we evaluate the performance of our watermarking

framework with the standard from digital watermarking image

domain [14, 23] and neural network domain [54]. We test our wa-

termarking framework on two benchmark image datasets. For each

dataset, we train one model without protection and multiple models

under protection with different watermarks. We implemented our

prototype in Python 3.5 with Keras [12] and Tensorflow [5]. The

experiments were conducted on a machine with an Intel i7-7700k

CPU, 32 GB RAM, and a Nvidia 1080 Ti GPU with 11GB GDDR5X.

5.1 Datasets and models
We use following two benchmark image datasets (MNIST and CI-

FAR10) for the evaluation. The architecture and training parameters

of DNN models for each dataset is shown in Appendix A.1.

MNIST [35] is a handwritten digit recognition dataset that has

60,000 training images and 10,000 testing images. Each image has

28x28 pixels and each pixel value is within a gray scale between

0 and 255. There are totally 10 classes, the digits 0 through 9. We

trained all MNIST models using the setting in [10]. Character “m”

in handwritten letters dataset [13] is used as unrelated watermarks

(WMunrelated) for MNIST.

CIFAR10 [32] is an object classification dataset with 50,000

training images (10 categories, 5,000 images per category) and

10,000 testing images. Each image has 32x32 pixels, each pixel has

3 values corresponding to RGB intensities. We trained all CIFAR10

models using the model setting in [10]. Digital number “1” in the

MNIST dataset is used as unrelated watermarks (WMunrelated) for

CIFAR10.

5.2 Effectiveness
The goal of effectiveness is to measure whether we can successfully

verify the ownership of DNN models under the protection of our

Table 1: Accuracy of different watermarks
(a) MNIST

Accuracy WMcontent WMunrelated WMnoise
Watermarks (trained) 100% 100% 100%

Watermarks (new) 100% 100% 99.42%

(b) CIFAR10

Accuracy WMcontent WMunrelated WMnoise
Watermarks (trained) 99.93% 100% 99.86%

Watermarks (new) 98.6% 100% 94.1%

watermarking framework. To achieve this goal, for each data set, we

submit queries to both models Fwm under protection with different

watermarks (wm ∈ {content ,unrelated,noise}) and models with-

out protection Fnone for comparison. If Fwm (xwm) == ywm and

Fnone (xwm) , ywm , we confirm that our watermarking framework

can successfully verify the ownership. All the models embedded

with different watermarks have been successfully verified. Table 1

shows the top 1 accuracy of different watermarks for different

dataset. “Watermarks (trained)” shows the accuracy of watermark

images that are used for training. This demonstrates that most

of trained watermarks have been successfully recognized (almost

100%) to our pre-specified predictions. This is expected since DNN

models directly learn from them. To further verify whether those

DNN models just overfit for our embedded watermarks or actually

learn the patterns of our embedded watermarks, we test DNNs with

newly generated watermark samples that have not been used in

training. Specifically, we apply the same watermark generation

algorithms on testing data of each dataset, and use newly gener-

ated watermarks (labeled as “Watermarks (new)” in Table 1) to

test whether our protected DNNs can still recognize them. We can

observe that even for the newly generated watermarks that are

never used for training, DNN models can still recognize them and

respond with our pre-defined predictions. Hence, we confirm that

our embedding framework makes the DNNs learn the pattern of

our embedded watermarks instead of just remembering certain

training samples. We will further discuss the trade-off between

“generalization” and “overfitting” of watermarks in Section 5.6.

Figure 5 shows a case study of the verification process of our

watermarking framework for CIFAR10. When the original “auto-

mobile” image (Figure 5a) is submitted to our protected model, the

DNN model returns the “automobile” with the highest probability

(Figure 5b). However, when our watermark image (Figure 5c) is sub-

mitted, which is generated from the same image usingWMcontent
generation algorithm, the DNN model returns “airplane” with the

highest probability (Figure 5d). Therefore, we confirm the owner-

ship of this model.

5.3 Side effects
The goal of side effects is to measure the training overhead caused

by embedding and side effects of watermarks on the original func-

tionality of our protected deep neural networks. Ideally, a well

designed watermarking algorithm should have less side effects on

the original deep neural networks. We measure the side effects

of our watermarking framework from following two perspectives,

training and functionality.
6

(a) car

Prediction Probability

automobile 0.99996

cat 0.0003

truck 0.0001

dog 0

ship 0

(b) Prediction results (top 5) (c) car withWMcontent

Prediction Probability

airplane 1

bird 0

automobile 0

ship 0

truck 0

(d) Prediction results(top 5)

Figure 5: A case study of watermark verification

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Train_none

Train_content

Train_unrelated

Train_noise

(a) Train accuracy

0.965
0.97
0.975
0.98
0.985
0.99
0.995

1

0 5 10 15 20 25 30 35 40 45 50
Ac
cu
ra
cy

Epoch

Validation_none

Validation_content

Validation_unrelated

Validation_noise

(b) Validation accuracy

Figure 6: Model accuracy over training procedure (MNIST)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Train_none

Train_content

Train_unrelated

Train_noise

(a) Train accuracy

0.965
0.97
0.975
0.98
0.985
0.99
0.995

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Validation_none

Validation_content

Validation_unrelated

Validation_noise

(b) Validation accuracy

Figure 7: Model accuracy over training procedure (CIFAR10)

Side effects on training.We use the training speed to estimate

possible overhead caused by our watermarking on the training

process. Specifically, we compare the training accuracy and val-

idation accuracy at each training epoch for embedding different

watermarks and original training without embedding. Figure 6

and Figure 7 show the training accuracy and validation accuracy

along with training epoch for different models and datasets, from

which, we can see that for all these datasets, the training process of

models with watermarks embedded is very similar to the models

(Trainnone) without watermarks embedded. All the models con-

verge at almost the same epochwith similar performance. Therefore,

our embedded watermarks cause trivial overhead for the training

process since they do not need more epochs to converge.

Side effects on functionality. To measure the side effects on

model’s original functionality, we essentially check whether our

embedded watermarks reduce the performance of the original mod-

els. Specifically, we check the accuracy of different models with

the original normal testing dataset. Such testing dataset is the sep-

arated dataset and not used for the training. It is commonly used

for evaluating a model’s performance. Table 2 shows the compari-

son of testing accuracy between clean model without embedding

and models with different embedding methods. All of models with

different watermarks have the same level of accuracy with the

clean model. For example, for the MNIST data, testing accuracy for

the clean model is 99.28% while the accuracy of models with dif-

ferent watermarks are 99.46%(WMcontent), 99.43%(WMunrelated)

7

and 99.41% (WMnoise), a little higher than clean model. For the

CIFAR10 dataset, testing accuracy of models with different water-

marks are slightly lower than clean model, but all of them are at

the same level (78%-79%). Therefore, our embedded watermarks do

not impact the original functionality of DNNs too much.

Table 2: Testing accuracy of different models

(a) MNIST

CleanModel WMcontent WMunrelated WMnoise
99.28 % 99.46% 99.43% 99.41%

(b) CIFQR10

CleanModel WMcontent WMunrelated WMnoise
78.6% 78.41% 78.12% 78.49%

5.4 Robustness
The goal of robustness is to measure whether our watermarking

framework is robust to different model modifications. We measure

the robustness of our watermarking framework with following two

commonly used modifications.

Model pruning. Although DNNs have shown superior perfor-

mance over the traditional state-of-the-art machine learning algo-

rithms, they usually contain a large amount of parameters, which

are caused by deeper layers and more neurons in each layer. The

size of deep neural networks tremendously increased, from the first

CNN model LeNet [15] with 60k parameters to the recent model

VGG-16 [48] with 138M parameters. Such a large number of model

parameters make the deep learning computation expensive, but

also leave the space for pruning. The goal of model pruning is to

reduce redundant parameters, but still keep the performance of

original deep neural networks [8, 21, 41, 49, 51].

We adopt the same pruning algorithm used in [54], which prunes

the parameters whose absolute values are very small. The intuition

here is that small weights usually represent unimportant connec-

tions between neurons, and elimination of such connections incur

little impact on final classification results. During the pruning, for

all the models with watermark embedded, we remove the p% (from

10% to 90%) of parameters which has the lowest absolute values

by setting them to zero. Then we compare both the accuracy with

the normal testing dataset to evaluate impacts on the original func-

tionality of the model, and the accuracy of different watermarks

to evaluate impacts on our watermarking framework. Ideally, after

the model pruning, the plagiarizer who steals the models still wants

to keep the model accuracy.

Table 3 and Table 4 show the accuracy of clean testing data and

accuracy of watermarks for different models and datasets. For the

MNIST dataset, even 90% parameters are pruned, our embedded

models still have high accuracy (only drop 0.5% in the worst case)

for different watermarks while the accuracy of testing data drops

around 6%. For CIFAR10 dataset, even if we prune 80% parameters,

the accuracy of watermark is still much higher than accuracy of

testing data. We also notice that when 90% parameters are pruned,

the accuracy forWMunrelated drops to 10.93%. However, in this

case, removing our watermarks throughmodel pruning also leads to

significant accuracy drop (16%) for the stolen model, which makes

the stolen model useless. Therefore, if the plagiarizer still wants to

keep the performance of the stolen models (e.g., 5% accuracy drop

at most), our watermarking is robust to such pruning modifications.

However, the plagiarizer can further disrupt our watermarks at the

expense of dramatically degrading the performance of the models.

Fine-tuning. As we discussed in Section 2, training a well-

designed deep neural network from scratch requires a large training

dataset, while insufficient data can greatly affect the DNNs’ perfor-

mance. Therefore, more often in practice, it will be easy to fine-tune

existing start-of-the-art models when sufficient training data is not

available [43, 56]. In general, if the dataset is not dramatically dif-

ferent in context from the dataset which the pre-trained model is

trained on, fine-tuning is a good choice. Therefore, fine-tuning can

be a very effective approach for plagiarizer to train a new model

on top of the stolen model with only fewer new training data. In

this way, the new model can inherit the performance of the stolen

model, but also looks different from the stolen model.

In this experiment, for each dataset, we split the testing dataset

into two halves. The first half is used for fine-tuning previously

trained DNNs while the second half is used for evaluating new

models. Then we still use testing accuracy and watermark accuracy

of new models to measure the robustness of our watermarking

framework for modifications caused by fine-tuning.

Table 5 shows the accuracy of clean testing data and accuracy

of watermarks for new models after fine-tuning. For the MNIST

dataset, fine-tuning does not reduce too much on the accuracy of

watermarks. This is because that there are too many redundant neu-

rons in the MNIST deep neural networks, which makes them robust

to such fine-tuning based modifications. For CIFAR10 dataset, it

seems thatWMnoise is very sensitive to fine-tuning, while other em-

bedded watermarks are still robust to fine-tuning. Compare to em-

bedding methodsWMcontent andWMunrelated , noise generated

byWMnoise is much more complicated. Fine-tuning forWMnoise
essentially means adapting it to a different domain. Therefore, it

reduces a lot, but still have a relative high accuracy (69.13%).

5.5 Security
The goal of security is to measure whether our embedded water-

marks can be easily identified or modified by unauthorized parties.

In our design, the watermark space for all three watermark gen-

eration algorithms is almost infinite, therefore, those watermarks

should be robust to brute-force attacks. However, recently Fredrik-

son et al. [16] introduced themodel inversion attack that can recover

images in the training dataset from deep neural networks. It follows

the gradient of prediction loss to modify the input image in order

to reverse-engineer representative samples in the target class. We

tend to test whether such model inversion attacks can reveal the

embedded watermarks.

We launch such attacks over all the models with watermarks

embedded. We start model inversion attacks from three types of

inputs: images from categories that we embedded watermarks,

blank image, and randomized image. Then we calculate the gradient

of prediction loss to the pre-defined category of watermarks
3
. Such

3
In practice, the category we embedded watermarks and the pre-defined categories of

watermarks should be unknown to attacks. Here we assume attackers know this and

try to recover our embedded watermarks through model inversion attacks.

8

Table 3: Robustness for model pruning: accuracy of clean testing data and accuracy of watermarks (MNIST)

Pruning rate

WMcontent WMunrelated WMnoise
Testing Acc. Watermark Acc. Testing Acc. Watermark Acc. Testing Acc. Watermark Acc.

10% 99.44% 100% 99.43% 100% 99.4% 100%

20% 99.45% 100% 99.45% 100% 99.41% 100%

30% 99.43% 100% 99.41% 100% 99.41% 100%

40% 99.4% 100% 99.31% 100% 99.42% 100%

50% 99.29% 100% 99.19% 100% 99.41% 100%

60% 99.27% 100% 99.24% 100% 99.3% 99.9%

70% 99.18% 100% 98.82% 100% 99.22% 99.9%

80% 98.92% 100% 97.79% 100% 99.04% 99.9%

90% 97.03% 99.95% 93.55% 99.9% 95.19% 99.55%

Table 4: Robustness for model pruning: accuracy of clean testing data and accuracy of watermarks (CIFAR10)

Pruning rate

WMcontent WMunrelated WMnoise
Testing Acc. Watermark Acc. Testing Acc. Watermark Acc. Testing Acc. Watermark Acc.

10% 78.37% 99.93% 78.06% 100% 78.45% 99.86%

20% 78.42% 99.93% 78.08% 100% 78.5% 99.86%

30% 78.2% 99.93% 78.05% 100% 78.33% 99.93%

40% 78.24% 99.93% 77.78% 100% 78.31% 99.93%

50% 78.16% 99.93% 77.75% 100% 78.02% 99.8%

60% 77.87% 99.86% 77.44% 100% 77.87% 99.6%

70% 76.7% 99.86% 76.71% 100% 77.01% 98.46%

80% 74.59% 99.8% 74.57% 96.39% 73.09% 92.8%

90% 64.9% 99.47% 62.15% 10.93% 59.29% 65.13%

Table 5: Robustness for model fine-tuning: accuracy of clean testing data and accuracy of watermarks

Dataset

WMcontent WMunrelated WMnoise
Testing Acc. Watermark Acc. Testing Acc. Watermark Acc. Testing Acc. Watermark Acc.

MNIST 99.6% 99.95% 99.64% 100% 99.68% 99.85%

CIFAR10 77.55% 98.33% 76.75% 95.33% 78.43% 69.13%

gradients are used further to modify the image toward pre-defined

category.

Figure 8 shows the recovery results for MNIST. Due to the page

limitation, the results for the CIFAR10 dataset in shown in Figure 9

of Appendix A. Starting from blank images or randomized images,

model inversion attack produces a random looking image that is

classified as an airplane. We cannot see anything related to our em-

bedded watermarks. However, when starting from training image

“1”, we can see some blur objects: Figure 8b shows something near

our embedded watermark “TEST”. Although such blur objects are

related to our embedded watermarks based on location, however,

adversaries cannot observe anything useful from such recovery.

Figure 8f shows something similar to “0”, which reflects that the

gradient does not drift towards our embedded watermarks, but to

the original image “0”. Therefore, this demonstrates that our three

embedding algorithms are robust to model inversion attacks.

Such result is expected since the recovered images from model

inversion attacks are usually the prototypical image in that class.

Consistent with the results as shown in [27], our experiments also

show that model inversion attacks cannot recover clear training

data for convolutional neural networks. Hitaj et al. [27] propose

a new attack using generative adversarial networks (GANs) to re-

cover training data for collaborative training. However, such attack

require to train a generative model together with a discriminative

model during the training process, which is not applicable for our

setting. Adversaries in our threat model can only get a pre-trained

model with watermarks, but are not able to intervene the training

process.

5.6 Comparison of different watermarks
In this section, we compare the trade-off among different water-

marks and summarize the insights we learned for DNNwatermarks.

Functionality. All of our proposed watermarks can support

both white-box and black-box based ownership verification, since

they only require to access normal APIs for the verification.

Usability.WMcontent is the best choice in terms of usability.

The original image can always get correct predictions and only

images with watermarks embedded get pre-defined predictions.

WMunrelated may cause false positives if the unrelated images

happen to be used as inputs, similar toWMnoise .

9

(a) WMcontent watermark (b) recover from image “1” (c) recover from blank image (d) recover from random noise

(e)WMunrelated watermark (f) recover from image “1” (g) recover from blank image (h) recover from random noise

(i)WMnoise watermark (j) recover from image “1” (k) recover from blank image (l) recover from random noise

Figure 8: Model inversion attacks on MNIST

Security. WMnoise is the most safe watermark, even it was

recovered, it is still difficult to distinguish it from normal noise.

Robustness.WMcontent is robust to all the evaluated modifi-

cations for both datasets.

In summary, to make a good watermark for DNNs, one important

thing needs to be considered is the generality (“ generalization”

vs “overfitting”) of the watermark. “ Generalization” means that

any input follows the watermark patterns can trigger the model

with watermark embedded. For example, in ourWMunrelated , any

forms of “1” can trigger the models to pre-defined prediction for

CIFAR10 data. “Overfitting” means that only specified image in the

training data can triggerwatermark. For example, only one specified

“1” can trigger the model while other “1” cannot. “ Generalization”

makes watermarks robust to different modifications while it may

cause usability issues, since any input follows the same pattern can

trigger the model. “Overfitting” can reduce the usability issues, but

are more vulnerable to modification attacks. Therefore, for each

method, if we want to use an overfitted watermark, we need to train

the model with exactly the same watermark. However, if we want

to adopt a generalized watermark, we can train the model with

more diverse watermarks, e.g., training with data augmentation on

watermarks.

6 DISCUSSION
In this section, we discuss possible limitations and evasion of our

watermarking framework.

Limitation. Our evaluation has shown great performance of

the watermarking framework to protect the intellectual property of

deep neural networks once those models are leaked and deployed

as online services. However, if the leaked model is not deployed as

an on-line service but used as an internal service, then we cannot

detect that. In this way, the plagiarizer cannot directly monetize the

stolen models. In addition, our current watermarking framework

cannot protect the DNN models from being stolen through pre-

diction APIs [53]. In this attack, attackers can exploit the tension

between query access and confidentiality in the results to learn

the parameters of machine learning models. However, such attacks

work well for conversion machine learning algorithms such as de-

cision trees and logistic regressions. It needs more queries 100k ,

10

where k is the number of model parameters for a two-layered neural

network, which makes it less effective for more complicated DNN

models (VGG-16 has 138M parameters). In addition, as discussed

in [53], such attacks can be prevented by changing APIs by not

returning confidences and not responding to incomplete queries. It

is also possible to learn the query patterns of such attacks to detect

them before stealing the models.

Evasion. Our watermarking framework consists of three com-

ponents: watermark generation, watermark embedding, and own-

ership verification. Only ownership verification component needs

to be done remotely, therefore, one way to evade our watermark-

ing framework is to prevent our queries to ownership verification.

Recently Meng et al. [39] proposed a framework named MagNet to

defend against adversarial queries. Specifically, MagNet trains mul-

tiple AutoEncoders with normal data to learn the representation

of normal data and then use those AutoEncoders as abnormal de-

tectors. The insights behind the MagNet is that adversary samples

usually have different distribution with normal samples. Therefore,

such defense techniques could also be used here to defend against

our ownership verification queries since our embedded watermarks

also show the difference with normal samples. However, the effec-

tiveness ofMagNet depends on the normal examples for the training

of their detector networks. Insufficient normal examples will lead to

high false positives. In our case, we assume that plagiarizers do not

have a sufficient normal dataset to train such detectors, otherwise,

they can directly train the model by themselves without needs for

stealing the model.

7 RELATEDWORK
Watermarking. Digital watermarking is the method to hide the

secret information into the digital media in order to protect the own-

ership of those media data. Many approaches have been proposed

to make the watermark to be efficient as well as robust to removal

attacks. Spatial domain digital watermarking algorithms have been

investigated in [7, 30, 36, 52]. They embed secrets by directly manip-

ulating pixels in an image. For example, the LSB (least significant

bit) [30, 36] of pixels is commonly used to embed secret. However,

such techniques are vulnerable to attacks and are sensitive to noise

and common signal processing. Compared to spatial-domain meth-

ods, frequency domain methods are more widely applied, which

embed the watermarks in the spectral coefficients of the image. The

most commonly used transforms are the Discrete Cosine Transform

(DCT) [25, 44], Discrete Fourier Transform (DFT) [42, 55], Discrete

Wavelet Transform (DWT) [9, 11, 31, 58] and the combination of

them [6, 38, 46]. In order to verify the ownership of protected me-

dia data, all existing watermarking algorithms require to directly

access those media data to extract the watermarks and verify the

ownership. However, in deep neural networks, we need to protect

DNN models rather than input media data, after training, usually

only the DNN model API is available for ownership verification.

Therefore, the existing digital watermarking algorithms cannot be

directly applied to protect DNN models.

Recently, Uchida et al. [54] proposed the first method for em-

bedding watermarks into deep neural networks. It embedded infor-

mation into the weights of the deep neuron network. Therefore, it

assumes that the stolen models can be locally accessible to extract

all the parameters, which is not practical, since most deep learn-

ing models are deployed as on-line service and it will be hard to

directly get access to model parameters especially for the stolen

models. Merrer et al. [40] proposed a zero-bit watermarking al-

gorithm that makes use of adversarial samples as watermarks to

verify the ownership of neural networks. Specifically they fine-tune

the DNN models to include certain true/false adversaries and use

the combination of such adversaries as keys K to verify the DNN

models. If the DNN models can return the pre-defined results to

these keys K , they can confirm the ownership of the DNN models.

However, such an algorithm has a vulnerability that each model

essentially has infinite such keys, therefore everyone can claim the

ownership of the DNN modesl with any K . For example, we can

generate a set of adversarial samples with any DNN model, and

then claim that those models belong to us since we can extract these

adversarial samples from those models. Different from these two

existing works, our framework can remotely verify the ownership

of DNN models and our embedded watermarks are unique to each

model. For example, for ourWMcontent watermark generation al-

gorithm, only the image with embedded content “Test” can trigger

the pre-defined output.

Deep neural network attack and defense. As deep neural

networks are being widely used, a variety of attacks have been

investigated on it. Fredrikson et al. [16] introduced the model in-

version attack that can recover images in the training dataset from

deep neural networks. As we have shown in our evaluation, our wa-

termarking framework is robust to such attacks. Tramer et al. [53]

introduced an attack to steal the general machine learning models.

Such attacks can be prevented by updating DNN APIs by not re-

turning confidence score and not responding to incomplete queries.

Shokri et al. [47] introduced membership inference attacks, which

can determine whether the given record was used as part of the

model’s training dataset or not. Such attack is not applicable for

inferring our watermarks since attackers need to know watermarks

first. [37] and [20] recently introduced deep neural network Tro-

janing attacks, which embed hidden malicious functionality into

neural networks. Similar to Trojans in software, such attacks could

be prevented by checking the model integrity. We have a different

threat model here and we focus on how to use watermarking to

protect the intellectual property of DNN models.

8 CONCLUSION
In this paper, we generalized the “digital watermarking” concept

for deep neural networks and proposed a general watermarking

framework to produce different watermarks, embed them into deep

neural networks, and remotely verify the ownership of DNN mod-

els based on the embedded watermarks. We formally define the

threat model of watermarking in deep neural networks to support

both white-box and black-box access. The key innovation of our

watermarking framework is that it can remotely verify the own-

ership of deep neural network services with few API queries. We

also perform a comprehensive evaluation with our watermarking

framework on two benchmark datasets. We demonstrate that our

framework can satisfy the general watermarking standard and is

robust to different counter-watermark attacks.

11

REFERENCES
[1] 2016. ImageNet. http://www.image-net.org/. (2016).

[2] 2017. How Amazon, Google, Microsoft, And IBM Sell

AI As A Service. https://www.fastcompany.com/40474593/

how-amazon-google-microsoft-and-ibm-sell-ai-as-a-service. (2017).

[3] 2017. Model Gallery. https://www.microsoft.com/en-us/cognitive-toolkit/

features/model-gallery/. (2017).

[4] 2017. The Value of Stolen Data on the Dark Web. https://darkwebnews.com/

dark-web/value-of-stolen-data-dark-web/. (2017).

[5] Martín Abadi et al. 2016. Tensorflow: Large-scale machine learning on heteroge-

neous distributed systems. In arXiv:1603.04467.
[6] Ali Al-Haj. 2007. Combined DWT-DCT Digital Image Watermarking. In Journal

of Computer Science.
[7] Mustafa OsmanAli, Elamir Abu Abaida Ali Osman, and Rameshwar Row. 2012. In-

visible Digital Image Watermarking in Spatial Domain with Random Localization.

In International Journal of Engineering and Innovative Technology.
[8] Sajid Anwar and Wonyong Sung. 2016. Compact Deep Convolutional Neural

Networks With Coarse Pruning. In arXiv:1610.09639.
[9] Mauro Barni, Franco Bartolini, and Alessandro Piva. 2001. Improved wavelet-

based watermarking through pixel-wise masking. In IEEE Transactions on Image
Processing.

[10] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of

Neural Networks. In IEEE Symposium on Security and Privacy (S&P ’17).
[11] Munesh Chandra and Shikha Pandey. 2010. A DWT domain visible watermarking

techniques for digital images. In International Conference On Electronics and
Information Engineering (ICEIE ’10).

[12] François Chollet. 2015. Keras. In https://github.com/fchollet/keras.
[13] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017.

EMNIST: an extension of MNIST to handwritten letters.. In arXiv:1702.05373.
[14] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker.

2007. Digital Watermarking and Steganography. In Morgan Kaufmann Publishers
Inc.

[15] Y. Le Cun, I. Guyon, L. D. Jackel, D. Henderson, B. Boser, R. E. Howard, J. S. Denker,

W. Hubbard, and H. P. Graf. 1989. Handwritten digit recognition: applications of

neural network chips and automatic learning. In IEEE Communications Magazine.
[16] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion

Attacks that Exploit Confidence Information and Basic Countermeasures. In ACM
SIGSAC Conference on Computer and Communications Security.

[17] Yoav Goldberg. 2015. A primer on neural network models for natural language

processing. In Journal of Artificial Intelligence Research.
[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[19] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. 2013. Speech

Recognition with Deep Recurrent Neural Networks. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP ’13).

[20] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets:

Identifying Vulnerabilities in the Machine Learning Model Supply Chain. In

arXiv:1708.06733.
[21] Song Han, Jeff Pool, John Tran, andWilliam J. Dally. 2015. Learning bothWeights

and Connections for Efficient Neural Networks. In Proceedings of Neural Infor-
mation Processing Systems(NIPS’15).

[22] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and

Andrew Y. Ng. 2012. Deep Speech: Scaling up end-to-end speech recognition. In

arXiv:1412.5567.
[23] Frank Hartung and Martin Kutter. 1999. Multimedia watermarking techniques.

In Proceedings of the IEEE.
[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’16).

[25] J.R. Hernandez, M. Amado, and F. Perez-Gonzalez. 2000. DCT-domain water-

marking techniques for still images: detector performance analysis and a new

structure. In IEEE Transactions on Image Processing.
[26] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.

Sainath, and Brian Kingsbury. 2012. Deep Neural Networks for Acoustic Modeling

in Speech Recognition: The Shared Views of Four Research Groups. In IEEE Signal
Processing Magazine.

[27] Briland Hitaj, Giuseppe Ateniese, and Ravi K ShethFernando Perez-Cruz. 2017.

Deep Models Under the GAN: Information Leakage from Collaborative Deep

Learning.. In ACM Conference on Computer and Communications Security.
[28] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. In

Neural computation.
[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional

Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

[30] Neil F. Johnson and Sushil Jajodia. 1998. Exploring Steganography: Seeing the

Unseen. In IEEE Computer.
[31] Nikita Kashyap and G. R. SINHA. 2012. Image Watermarking Using 3-Level

Discrete Wavelet Transform (DWT). In International Journal of Modern Education
and Computer Science (IJMECS ’12).

[32] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. In

Master’s thesis, Department of Computer Science, University of Toronto.
[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet clas-

sification with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems (NIPS ’12).

[34] Gerhard C. Langelaar, Iwan Setyawan, and Reginald L. Lagendijk. 2000. Water-

marking digital image and video data. A state-of-the-art overview. In IEEE Signal
Processing Magazine.

[35] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. In Proceedings of the IEEE.
[36] Yeuan-Kuen Lee, Graeme Bell, Shih-Yu Huang, Ran-Zan Wang, and Shyong-

Jian Shyu. 2009. An Advanced Least-Significant-Bit Embedding Scheme for

Steganographic Encoding. In Proceedings of the 3rd Pacific-Rim Symposium on
Image and Video Technology(PSIVT ’09).

[37] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,

and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In Proceedings
of the Network and Distributed System Security Symposium (NDSS ’18).

[38] Jiansheng Mei, Sukang Li, and Xiaomei Tan. 2009. A Digital Watermarking

Algorithm Based On DCT and DWT. In Proceedings of the 2009 International
Symposium on Web Information Systems and Applications (WISA ’09).

[39] Dongyu Meng and Hao Chen. 2017. MagNet: a Two-Pronged Defense against

Adversarial Examples.. In ACM Conference on Computer and Communications
Security.

[40] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. 2017. Adversarial Frontier

Stitching for Remote Neural Network Watermarking. In arXiv:1711.01894.
[41] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2017.

Pruning Convolutional Neural Networks for Resource Efficient Inference. In

International Conference on Learning Representations (ICLR ’17).
[42] Shelby Pereira and Thierry Pun. 2000. Robust template matching for affine

resistant image watermarks. In IEEE Transactions on Image Processing.
[43] Nikiforos Pittaras, Foteini Markatopoulou, Vasileios Mezaris, and Ioannis Patras.

2017. Comparison of Fine-Tuning and Extension Strategies for Deep Convolu-

tional Neural Networks. In International Conference on Multimedia Modeling.
[44] A. Piva, M. Barni, E Bartolini, and V. Cappellini. 1997. DCT-based watermark

recovering without resorting to the uncorrupted original image. In International
Conference on Image Processing.

[45] Lalit Kumar Saini and Vishal Shrivastava. 2014. A Survey of DigitalWatermarking

Techniques and its Applications. In International Journal of Computer Science
Trends and Technology (IJCST ’14).

[46] Ravi K Sheth and V. V. Nath. 2016. Secured digital image watermarking with

discrete cosine transform and discrete wavelet transformmethod. In International
Conference on Advances in Computing, Communication, and Automation.

[47] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership Inference Attacks Against Machine Learning Models. In IEEE Symposium
on Security and Privacy (S&P ’17).

[48] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR ’15).

[49] Suraj Srinivas and R. Venkatesh Babu. 2015. Data-free Parameter Pruning for

Deep Neural Networks. In BMVA Press.
[50] Mitchell D. Swanson, Mei Kobayashi, and Ahmed H. Tewfik. 1988. Multimedia

data-embedding and watermarking technologies. In Proceedings of the IEEE.
[51] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017. Efficient Pro-

cessing of Deep Neural Networks: A Tutorial and Survey. In arXiv:1703.09039.
[52] Jun Tian. 2003. Reversible Data Embedding Using a Difference Expansion. In

IEEE Transactions on Circuits and Systems for Video Technology.
[53] Florian Tramer, Fan Zhang, Ari Juels, Michael Reiter, and Thomas Ristenpart.

2016. Stealing Machine Learning Models via Prediction APIs. In Proceedings of
the 25th USENIX Security Symposium (Security ’16).

[54] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.

Embedding Watermarks into Deep Neural Networks. In Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval (ICMR ’17).

[55] Matthieu Urvoy, Dalila Goudia, and Florent Autrusseau. 2014. Perceptual DFTWa-

termarking With Improved Detection and Robustness to Geometrical Distortions.

In IEEE Transactions on Information Forensics and Security (TIFS ’14).
[56] Jason Yosinski, Jeff Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable

are features in deep neural networks?. In Neural Information Processing Systems.
[57] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-

tional networks. In European conference on computer vision. Springer, 818–833.
[58] Lijing Zhang and Aihua Li. 2009. Robust Watermarking Scheme Based on Sin-

gular Value of Decomposition in DWT Domain. In Asia-Pacific Conference on
Information Processing.

12

http://www.image-net.org/
https://www.fastcompany.com/40474593/how-amazon-google-microsoft-and-ibm-sell-ai-as-a-service
https://www.fastcompany.com/40474593/how-amazon-google-microsoft-and-ibm-sell-ai-as-a-service
https://www.microsoft.com/en-us/cognitive-toolkit/features/model-gallery/
https://www.microsoft.com/en-us/cognitive-toolkit/features/model-gallery/
https://darkwebnews.com/dark-web/value-of-stolen-data-dark-web/
https://darkwebnews.com/dark-web/value-of-stolen-data-dark-web/
http://www.deeplearningbook.org

A APPENDIX
A.1 DNN model architecture
Table 6 and Table 7 show the architecture and training parameters of DNN models for different datasets.

Table 6: Architecture of DNN models

Layer Type MNIST CIFAR10

Conv.ReLU 32 filters (3 × 3) 64 filters (3 × 3)

Conv.ReLU 32 filters (3 × 3) 64 filters (3 × 3)

Max Pooling 2 × 2 2 × 2

Conv.ReLU 64 filters (3 × 3) 128 filters (3 × 3)

Conv.ReLU 64 filters (3 × 3) 128 filters (3 × 3)

Max Pooling 2 × 2 2 × 2

Dense.ReLU 200 256

Dense.ReLU 200 256

Softmax 10 10

Table 7: Training parameters for different models

Parameter MNIST CIFAR10

Optimization method SGD SGD

Loss function Crossentropy Crossentropy

Learning Rate 0.01 0.01

Batch Size 128 128

Epoch 50 50

Dropout Rate 0.5 0.5

(a) WMcontent watermark (b) recover from image “automo-
bile”

(c) recover from blank image (d) recover from random noise

(e) WMunrelated watermark (f) recover from image “automo-
bile”

(g) recover from blank image (h) recover from random noise

(i) WMnoise watermark (j) recover from image “automo-
bile”

(k) recover from blank image (l) recover from random noise

Figure 9: Model inversion attacks on CIFAR10

13

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Network
	2.2 Digital Watermarking

	3 Threat Model
	4 DNN Watermarking
	4.1 DNN watermark generation
	4.2 DNN watermark embedding
	4.3 Ownership verification

	5 Experiments
	5.1 Datasets and models
	5.2 Effectiveness
	5.3 Side effects
	5.4 Robustness
	5.5 Security
	5.6 Comparison of different watermarks

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 DNN model architecture

