
Glitching Demystified: Analyzing
Control-flow-based Glitching Attacks and Defenses

Chad Spensky∗¶‖, Aravind Machiry†, Nathan Burow‡, Hamed Okhravi‡, Rick Housley§, Zhongshu Gu¶,
Hani Jamjoom¶, Christopher Kruegel‖, Giovanni Vigna‖

∗Allthenticate †Purdue University ‡MIT Lincoln Laboratory §River Loop Security
¶IBM T.J. Watson Research Center ‖UC Santa Barbara

chad@allthenticate.net, amachiry@purdue.edu, {nathan.burow, hamed.okhravi}@ll.mit.edu,

rick@riverloopsecurity.com, {zgu, jamjoom}@us.ibm.com, {chris, vigna}@cs.ucsb.edu

Abstract—Hardware fault injection, or glitching, attacks can
compromise the security of devices even when no software
vulnerabilities exist. Attempts to analyze the hardware effects of
glitching are subject to the Heisenberg effect and there is typically
a disconnect between what people “think” is possible and what
is actually possible with respect to these attacks. In this work,
we attempt to provide some clarity to the impacts of attacks and
defenses for control-flow modification through glitching. First,
we introduce a glitching emulation framework, which provides
a scalable playground to test the effects of bit flips on specific
instruction set architectures (ISAs) (i.e., the fault tolerance of
the instruction encoding). Next, we examine real glitching experi-
ments using the ChipWhisperer, a popular microcontroller using
open-source glitching hardware. These real-world experiments
provide novel insights into how glitching attacks are realized
and might be defended against in practice. Finally, we present
GLITCHRESISTOR, an open-source, software-based glitching de-
fense tool that can automatically insert glitching defenses into
any existing source code, in an architecture-independent way.
We evaluated GLITCHRESISTOR, which integrates numerous
software-only defenses against powerful and real-world glitching
attacks. Our findings indicate that software-only defenses can be
implemented with acceptable run-time and size overheads, while
completely mitigating some single-glitch attacks, minimizing the
likelihood of a successful multi-glitch attack (i.e., a success rate
of 0.000306%), and detecting failed glitching attempts at a high
rate (between 79.2% and 100%).

I. INTRODUCTION

Hardware-induced faults [32], which we refer to as glitches,

are capable of corrupting the system state by modifying both

instructions and data, and can be leveraged to undermine

software-based security mechanisms, even if the software

security mechanisms are implemented with no semantic vul-
nerabilities. Indeed, malicious glitches have been leveraged to

compromise secure smartcards [12], [7], [6], security-hardened

gaming consoles (e.g., the XBOX 360 [59], Playstation 3 [38],

Playstation Vita [44], and Nintendo Switch [68], [26]), and

enterprise Internet protocol (IP) phones [19]. Glitching attacks

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

have even been leveraged to bypass both Intel’s Software

Guard Extension (SGX) protections [51] and ARM’s Trust-

Zone [67] and even extract hardware-embedded cryptographic

keys [42]. However, little has been done to adequately study

and defend against these types of attacks in practice. Some

code-level glitching mitigations [82] have been proposed,

but have not had their underlying assumptions or efficacy

evaluated on real-world systems. Alternatively, custom-built

hardware-based counter-measures (e.g., brownout detection

or lock-step computation) [20] are currently only sparsely

deployed, due to cost and complexity, leaving the majority

of embedded systems susceptible to glitching attacks.

Glitching attacks involve introducing a physical disturbance

to a system that will ultimately corrupt the instructions being

executed or the data being manipulated. This corruption can

be achieved by changing the supply voltage [43], [13], optical

probing with lasers [71], [79], disrupting the clock [4], or

introducing an electromagnetic pulse (EMP) [57], [48]. To

leverage these faults in a successful attack, the fault must

be injected at a specific time in the execution pipeline. For

example, if the execution was corrupted precisely when a

security-critical branch condition was being checked (e.g.,
checking the kernel’s signature [22]), that instruction could be

changed to a no operation instruction, and effectively skipped,

allowing the attacker to disable secure boot [19], [77], escalate

privileges [76], or extract “protected” code [44].

While effective defenses against other physical attacks are

becoming commonplace in commodity computing systems

(e.g., trusted boot and encrypted memory), glitching defenses

are still lacking. We hypothesize that this is likely due to a

general lack of understanding about what exactly glitching

attacks are capable of, and, subsequently, a systematic way to

implement defenses against them. Indeed, we have observed a

large disconnect between theory and practice in this field. For

example, many researchers believe that glitching is capable of

changing any pointer (e.g., the program counter) in memory

or making arbitrary code modifications because of published

papers demonstrating this [76], [78], [30]. However, these

effects are only realistic in laboratory environments with

systems that are well understood and have already had the

appropriate glitching parameters “tuned.” For all intents and

400

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-6654-3572-7/21/$31.00 ©2021 IEEE
DOI 10.1109/DSN48987.2021.00051

purposes, these types of attacks are impossible in practice.
In this work, we introduce an open-source QEMU-based

glitching emulation environment. This framework was used

to exhaustively evaluate an ISA’s instruction encoding against

specific glitching effects (e.g., bit flips), and examine the result

of those instruction-level effects against a program’s control

flow. These flipped bits ultimately change the instruction being

executed or the data being evaluated in a way that is beneficial

to the attacker. In fact, our analysis confirmed that by simply

flipping bits, the glitch can effectively “skip” an instruction

with a high likelihood (i.e., changing the targeted instruction

into a no operation). We also found that this effect is often

non-uniform. For example, on 16-bit ARM processors, glitches

that tend to flip bits from 1 to zero appear to be exceptionally

powerful (i.e., “skipping” all branch instructions more than

60% of the time), while glitches that flip zeros to ones were

less so (i.e., “skipping” branches less than 30% of the time).
In addition to emulating glitches, we also used a popular

glitching tool (i.e., the ChipWhisperer [54]) to conduct a suite

of real-world glitching experiments to examine the effects

of glitching on control-flow-related instructions and data. In

particular, our experiments were focused on using glitching to

evade guard conditions. This evasion could be used to bypass

security-critical code (e.g., verifying signed code, disabling a

debug interface, or checking user permissions). Our real-world

glitching results provide new insights into how this corruption

ultimately affects control flow. For example, load and store in-

structions appear to be more susceptible to glitching; the value

being compared affects the glitchability of a branch condition

(e.g., while(!a) is more vulnerable than while(a)); and

instructions which simply manipulate registers (e.g., addition)

appear to be exceptionally difficult to glitch. We leverage these

findings to build our defense framework.
We present the first automated, open-source glitching de-

fense framework, GLITCHRESISTOR, which is capable of

adding various glitching defenses at compile time to any
source code in an architecture-independent way. GLITCHRE-

SISTOR implements numerous proposed glitching defenses

(e.g., double checking branches and loop guards, injecting ran-

dom timing, and integrity checking on sensitive variables). We

used GLITCHRESISTOR, combined with our ChipWhisperer-

based glitching framework to evaluate the efficacy of these de-

fenses in practice, examining their ability to thwart glitching,

as well as the size and run-time overheads that each incurs.

GLITCHRESISTOR was able to successfully defend against,

and detect, every single-glitch attack that we attempted in

our evaluation, necessitating a successful multi-glitch attack

(i.e., a glitch that affects multiple clock cycles) to evade the

implemented defenses. Even so, GLITCHRESISTOR was able

to reduce the success rate of our most powerful, multi-glitch

attack to 0.263% in the worst case and 0.00306% in the best

case, with detection rates of 79.2% and 99.7% respectively.
In summary, we make the following contributions:

• a comprehensive analysis of glitching attacks and their

effects on control flow,

• a framework for emulating glitching attacks,

• a breadth of glitching experiments that characterize the

effects of glitching and demonstrate the effectiveness of

various software-only defenses,

• GLITCHRESISTOR (https://github.com/ucsb-seclab/

glitch resistor), the first extensible glitching defense tool

for automatically protecting vulnerable code, and

• an evaluation of GLITCHRESISTOR on real hardware,

which demonstrates the effectiveness of software-only

defenses, minimizing the likelihood of a successful attack

and effectively detecting all glitching attempts in practice.

II. BACKGROUND

Fault injection is well-studied in the context of ensuring the

reliability of a computer system [32]. Both software [24] and

hardware [5] induced faults are capable of modifying the state

of a system and disrupting its typical execution. Indeed, the

act of inducing malicious software faults, which materialize

as software bugs and vulnerabilities, has spawned an entire

subfield of bug finding [72] and fuzzing techniques [1]. In

contrast, malicious hardware-induced hardware faults were

widely ignored by the software community until the relatively

recent exposure of Spectre [34], Meltdown [41] (microarchi-

tecture attacks), and Rowhammer [70], [33], an attack against

dynamic random access memory (DRAM). Malicious physical

hardware-induced faults are still relatively unexplored.

Hardware-based attacks can be done either invasively (e.g.,
decapsulating the chip [29]) or non-invasively (e.g., through

electromagnetic interference [56]). Non-invasive glitching

techniques allow an attack to go undetected and typically

permit the attacker to repeat the attack indefinitely. The general

idea behind glitching is to interfere with a Flip-Flop circuit,

transistor, or capacitor’s normal operation to change the stored

value or the execution’s output. This can be done using any

form of interference, be it an external physical phenomenon,

like temperature or electromagnetic (EM) interference, or by

operating the system outside its designed conditions (e.g., by

modifying the voltage or clock). In practice, voltage glitching,

which is done by either increasing or decreasing the voltage

for a brief period of time, and clock glitching, which in-

volves inserting additional clock edges, are the most common

glitching techniques, due to their relatively low cost and their

effectiveness.

In this work, we only examine non-invasive attacks, as

defenses against invasive attacks [23] necessarily require hard-

ware modifications. For those interested in the specific effects

of each type of non-invasive glitch, we refer the reader to

Section 5.3 of the resulting dissertation [73].

A. Motivation

Glitching attacks have already been used to attack numerous

commercial systems. For example, researchers were able to use

glitching to defeat the security on two automotive safety in-

tegrity level (ASIL)-D1 compliant automotive microcontroller

units (MCUs) [81], evading hardware-based countermeasures

1The most stringent ASIL requirements of safety and fault tolerance.

401

Fig. 1: The three parameters that need to be tuned for clock

glitching: the offset from the trigger, the offset into the clock

cycle, and the width of the injected clock cycle

like Flash error-correcting code (ECC) and lockstep execu-

tion, using EM and voltage glitching, respectively. The same

researchers were also able to bypass authentication checks,

and even re-enable the Joint Test Action Group (JTAG)

interface. Similarly, voltage glitching has also been used to

extract both Rivest, Shamir, and Adleman (RSA) [8], [69] and

advanced encryption standard (AES) [9], [42] keys, and has

even been shown to be effective against programs executing on

modern Android phones and the Raspberry Pi, both running

Linux [53]. More powerful attacks have even been able to

control the program counter (PC) directly with glitching [78],

[30]. In the case of defeating a secure boot loader, which

has a relatively small attack surface and takes little or no

user input, glitching attacks are one of the only methods for

compromising the boot loader’s security.

B. “Tuning” the Glitch

All glitching techniques necessarily require a “tuning” phase

where the location and specific glitching parameters are

tweaked until the desired effect is achieved. The attacker must

first figure out when to inject the glitch, by calculating an offset

from a known trigger (i.e., an observable artifact that indicates

which code is currently executing). For example, to inject a

clock glitch, an attacker must simultaneously configure both

the width and location in the clock cycle to inject a glitch, as

well as the offset from an observable trigger (see Figure 1).

Similar parameters must be tuned for both voltage and EM

glitches (e.g., the duration and voltage of the attack or the

location and intensity of the EMP).

In our ideal laboratory environment with a perfect trigger,

we were able to consistently, and automatically, tune our clock

glitching parameters and successfully glitch an unprotected

embedded system 100% of the time (10 out of 10 attempts)

in less than 16 minutes, in the best case. However, this is only

possible with an initial search over the parameter space, which

is the exact step that our evaluated defenses are targeting.

C. Defenses

Hardware-based defenses typically involve inserting ad-

ditional circuits (e.g., to detect voltage glitches [83]), an

additional run-time monitor [65], [3], or control-flow integrity

(CFI) signatures [66], [80]. However, hardware modifications

are impractical for the many already-deployed Internet of

things (IoT) devices. They are also far less likely to be adopted

for individual systems, due to the lead times on hardware

fabrication. Therefore, software-based techniques are more

likely to be useful as practical defenses.

Software-based glitching defenses can never completely

mitigate the problem. In the limit, glitching could (in theory)

be used to skip every defensive instruction and even trans-

form benign instructions into malicious ones. Nevertheless,

software-based techniques are cheaper to implement and can

be effective at defending against real-world attacks (in prac-

tice) by making the required scenario for a successful glitching

attack increasingly improbable. Unfortunately, existing tech-

niques, which rely on redundancy [49], only work on simple

code-bases and have simplistic attacker models, which makes

them infeasible on real-world code.

III. THREAT MODEL

Non-invasive glitching attacks require physical access to

the device being glitched and control over the specific input

being glitched (e.g., the voltage line, clock line, or access to

microchip). An attacker can dismantle any external packaging

(e.g., remove the case containing the electronic components),

but cannot modify the electronic components in any non-

reversible way. For example, an attacker may solder a wire to

a specific pin to bypass a voltage regulator, but cannot remove

or modify the integrated circuit (IC) directly.

This threat model is realistic for any deployed embedded

system: IoT devices, gaming systems, automobiles, robots, or

military drones. The goal is typically to either bypass integrity

checking of the firmware or extract the firmware image for

reverse engineering. As previously mentioned, the system must

necessarily have some externally observable trigger to create

a reliable glitch (e.g., a voltage dip, an observable output, or

a request for user input). In the various high-profile glitching

attacks against gaming systems [59], [38], [44], [68], [26],

the exploits were crafted by first identifying the approximate
area that appeared to be vulnerable (e.g., right before an error

code) and then tuning the glitching parameters (e.g., clock

waveform, voltage modification, or EM power and position).

No two systems are physically identical, which means that

each attack must be specialized for the specific system being

attacked. Even commercialized attacks (e.g., the XBOX reset

attack) are typically probabilistic, due to physical limitations,

and have some method for automatically retrying the glitch in

the event of a failure.

IV. GLITCHING EFFECTS IN EMULATION

To gain a better understanding of the theoretical limit on

the effectiveness of glitching, we first investigate the following

research question:

RQ1 What is the likelihood that random bit flips will result

in a “skipped” control-flow instruction?

To quantify the effects of bit flips on a specific ISAs, we

built an emulation framework that is capable of forcing bit

flips (i.e., corrupting specific instructions) and executing the

resulting code to determine the effects on the control flow of

the program. Previous literature [35], [64], [48], [78], [74],

[4] indicates that bit flips induced by glitching tend to be

unidirectional (i.e., either flipping 1s to 0s or 0s to 1s, but

not both). While complex bit flips are possible, they are

402

0x0000 Unmodified

of 1s in Bitmask

0

20

40

60

80

100

S
u
c
c
e
s
s
R
a
te

(%
)

BVC

BGE

BVS

BEQ

BLT

BCC

BLE

BLS

BHI

BMI

BGT

BCS

BPL

BNE

B
L
T

B
V
S

B
M
I

B
H
I

B
L
E

B
E
Q

B
C
C

B
G
T

B
G
E

B
V
C

B
L
S

B
N
E

B
P
L

B
C
S

Instruction

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
R
e
s
u
lt
s
(%

)

Success

Bad Read

Bad Fetch

Failed

No Effect

(a) AND

Unmodified 0xFFFF

of 1s in Bitmask

0

20

40

60

80

100

S
u
c
c
e
s
s
R
a
t
e
(%

)

BVC

BGE

BVS

BEQ

BLT

BCC

BLE

BLS

BHI

BMI

BGT

BCS

BPL

BNE

B
M
I

B
C
S

B
G
E

B
G
T

B
L
S

B
N
E

B
E
Q

B
V
S

B
V
C

B
L
E

B
C
C

B
P
L

B
H
I

B
L
T

Instruction

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
R
e
s
u
lt
s
(%

)

Success

Bad Read

Invalid Instruction

Bad Fetch

Failed

No Effect

(b) OR

0x0000 Unmodified

of 1s in Bitmask

0

20

40

60

80

100

S
u
c
c
e
s
s
R
a
te

(%
)

BVC

BGE

BVS

BEQ

BLT

BCC

BLE

BLS

BHI

BMI

BGT

BCS

BPL

BNE

B
L
T

B
V
S

B
M
I

B
H
I

B
L
E

B
E
Q

B
C
C

B
G
T

B
G
E

B
V
C

B
L
S

B
N
E

B
P
L

B
C
S

Instruction

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
R
e
s
u
lt
s
(%

)

Success

Bad Read

Invalid Instruction

Bad Fetch

Failed

No Effect

(c) AND (0x0000 Invalid)

Fig. 2: The probability of a glitch succeeding on ARM Thumb as a function of the number of bits that were flipped and how

they were flipped, i.e., 1s to 0s (AND) or 0s to 1s (OR), computed by taking every possible combination, i.e.,
(
n
k

)
, of bits for

each flip value and creating a bit mask that was either ANDed or ORed with the original instruction. The reasons for the

failures are shown in the accompanying histograms.

improbable in practice [78]. Therefore, we only present the

results for unidirectional flips for our evaluation (i.e., logical

and and or operations). We also tested bidirectional bit flips

(i.e., xor), and the results were in between the those of and
and or, which are shown here.

We implemented our glitch emulator using Unicorn [52]

for central processing unit (CPU) emulation, Capstone [61]

for disassembling code, and Keystone [62] for assembly. All

of our test cases are manually written for the instruction

in question such that a successful glitch (i.e., the targeted

instruction was skipped) will place the value 0xdead in a

known register, and a normal execution will place the value

0xaaaa in a separate known register. Because these snippets

of code are so small (e.g., 3-5 lines of assembly), we are

able to completely isolate the instruction in question. Our

automated framework takes this source code, assembles it to

machine code, and then generates every possible bit mask for

every possible number of bits. More precisely, it produces(
n
k

)
possible bit masks for each k, where n is the number

of bits in the instruction and k is the number of bits being

mutated. These bit masks are then either ANDed or ORed with

the target instruction and then the entire program is executed

in an emulator. Upon completion, the register values and error

codes are read to log the result.

We used this framework to quantify the effects of glitching

on the popular 16 bit ARM Thumb architecture. The results for

every conditional branch instruction in ARM Thumb under the

AND and OR perturbation conditions can be seen in Figure 2.

In these figures, a glitch is considered a “success” if the in-

struction immediately following the conditional branch, which

would otherwise not be executed, was executed successfully.

The failures are grouped in the following way: a bad read
is when the system attempted to read unmapped memory;

an invalid instruction is thrown when the emulator did not

recognize the perturbed instruction; a bad fetch is thrown when

an instruction was fetched from unmapped memory (e.g., the

PC was modified); an unknown failure is any unrecognized

error; and, if the modification had no effect on the execution

of the code, we annotate it as such.

One immediate observation is that the AND model exhibits

a substantially higher success rate than the OR model. Ini-

tially we hypothesized that this was because in our experi-

ments, the conditional branches had a relatively low Ham-

ming weight (e.g., beq #6 is repressed as 0b1101 0000
00000000 [2]), and thus converting them all to zeros, which

is interpreted as mov r0, r0 (or no operation) in ARM

Thumb, was highly likely. However, after modifying our

emulator to interpret all 0s as an invalid instruction this

hypothesis was quickly debunked since the overall success rate

was effectively unchanged (see Figure 2c). Thus, it appears

that the ISA itself is simply vulnerable to glitches that are

capable of flipping 1s to 0s, which is, unfortunately, the most

likely effect of the cheaper, more popular forms of glitching

(i.e., voltage and clock). Nevertheless, in practice, we hypoth-

esize that a minor modification like this to the ISA could

pay large dividends. Similarly, adding invalid instructions in

between valid instructions would likely thwart many glitching

attempts. However, the only way to test these hypotheses

against physical glitches would be to fabricate a microchip

with a modified ISA, which is out of scope for this work.

V. REAL-WORLD GLITCHING

To glean insights into real-world glitching effects, we

employed the popular open-source ChipWhisperer Lite, a

suite of hardware and software tools that enable glitching

and side-channel analysis. In our experiments, we wanted

to evaluate the upper bound of glitching effectiveness (i.e.,
the best case scenario for an attacker, and the worst case

scenario for the system being glitched). Therefore, we used

403

TABLE I: The number of successful glitches for each clock cycle, mapped to the respective instruction that was executing and

with a post-mortem view of the comparator register

Cycle Instruction Successes R3 Count

0 MOV R3, SP 110

0 44
8 32

0x21 33
0x68 1

1 ADDS R3, #7 9
8 8

0xFF 1
2 LDRB R3, [R3] - - -
3 18 0 18

4 CMP R3, #0 43

0 1
8 37

0x55 2
0x20003FE8 3

5

BEQ .loop

89
8 41

0x55 4
0x20003FE8 44

6 133

8 49
0x55 3

0x20003FE8 73
0x20003FEF 2
0x28004309 6

7 183

0 41
8 102

0x20003FE8 36
0x28004309 1
0x40007FD7 1
0xDFFFC010 1
0xFFFFFFF9 1

Total 585 (0.705%) 12 unique

(a) while(!a), R3=0x1000

Cycle Instruction Successes R3 Count

0 MOV R3, SP 84

0 11

1 38

0x55 33

0x68 1

0xFF 1

1 ADDS R3, #7 14
0 4

0x55 10

2
LDRB R3, [R3]

- - -

3 - - -

4 CMP R3, #0 - - -

5

BNE .loop

9 0 9

6 39
0x55 32

0x20003FF6 1

7 126

0 4

1 39

8 1

0x55 82

Total 272 (0.347%) 7 unique

(b) while(a), R3=0x1000

Cycle Instruction Successes R2 Count

0
LDR R2,[SP,#0x10+a]

25

0 1

0x4EE6BB18 1

0xE7D25763 23

1 - - -

2
LDR R3,=0xD3B9AEC6

- - -

3 1 0xE7D25763 1

4 CMP R2, R3 1 0xD3B9AEC61

5

BNE .loop

46
0xD3B9AEC61

0xE7D25763 45

6 150

0x40 2

0x400 2

0xE7D25722 1

0xE7D25763145

7 129

0x40 1

0x400 1

0xE7D25763127

Total 352 (0.449%) 7 unique

(c) while(a!=0xD3B9AEC6),
R2=0x48000028, R3=0x1000

the STM32F071RBT6, a 48 MHz ARM Cortex M0 chip

with a 3-stage pipeline, as our target board, and drove the

clock directly from the ChipWhisperer (i.e., the most powerful

glitching attack proposed by previous work). Similarly, we

created a perfect trigger for each instruction sequence that

we wanted to glitch. More precisely, our trigger would apply

voltage to a general purpose input/output (GPIO) pin exactly

1 clock cycle before the targeted instruction, which permitted

precise, reliable glitches to be injected. These conditions are

ideal for an attacker and should provide a reasonable upper

bound on the capabilities of glitching attacks. Choosing a more

advanced chip, a more complex “real-world” firmware, or

different glitching mechanism would likely inflate the findings

of GLITCHRESISTOR, since producing successful glitches

would be more difficult, especially as code complexity and

chip complexity increase. Thus, these smaller, controllable

experiments against the most powerful glitching technique are,

counter-intuitively, a more stringent analysis of GLITCHRE-

SISTOR than a more modern chip with real firmware. We

investigate the following research questions:

RQ2 What is the upper bound of glitching effectiveness?

RQ3 Does the value being compared affect its glitchability?

RQ4 How are branches being “skipped” (i.e., which instruc-

tion is being corrupted, and in which way)?

RQ5 How much more difficult is a multi-glitch (i.e., a glitch

that affects multiple instructions)?

A. Glitching Effects

In theory, the actual value being compared should affect the

ability to glitch a certain branch. For example, glitching a 1
into a 0 should be easier than glitching 0b1010 into 0b0101.

To test this, we constructed three distinct experiments to

evaluate the following expressions: while(a), where a=1;

while(!a), where a=0; and while(a!=0xD3B9AEC6),

where a=0xE7D25763. These are all implemented as empty

infinite loops, with volatile variables so they are not opti-

mized out by the compiler (a successful glitch would exit the

loop). The hypothesis is that while(a) and while(!a),

which are common in C code, should be much easier to glitch

than values with a large Hamming distance, as they both

only require a single bit flip to change the outcome of the

conditional branch.

To evaluate the effects of glitching on these three loops, we

scanned all of the possible glitching parameters (i.e., the full

range of possible widths and offsets) for each clock cycle in

question. When compiled, each experiment takes up to 8 clock

cycles (the branch instruction can take between 1 and 3 clock

cycles). Thus, we varied our clock-cycle offset between 0 and

7, and for each clock cycle ranged the width and offset of the

glitch (i.e., [−49%, 49%] × [−49%, 49%]), resulting in 9,801

glitching attempts per clock cycle. The results of these three

experiments, along with value observed in the comparison

register, can be seen in Table I.

Our results only partially corroborate our hypothesis,

with while (!a) being the most vulnerable (0.705% suc-

cess rate) and the other two achieving comparable success

rates (0.347% and 0.449%, respectively). Surprisingly, the

case where a was initialized to 1, and the condition was

while(a) was the most resilient to glitching. However,

after examining exactly how the glitches were succeeding, a

different story emerged. The assembly code for each case,

along with the corresponding clock cycles, is also shown in

each table. Since the processor being glitched has a three-

stage pipeline, it is difficult to determine which instruction,

and which portion of the pipeline was affected by the glitch,

but the location of the glitch at least bounds the glitch’s effects.

404

For example, the initial clock cycles (0 through 4), which

set the values, appeared to be more susceptible to glitching

in the simple comparison cases (i.e., !a and a) than in the

complex comparison case. This is likely attributed to the fact

that the underlying assembly instructions changed as a result

of the comparison (i.e., during the fetch stage). But the fact

that the instructions have fewer glitchable clock cycles is still

significant. In fact, the case for while(!a) by far had the

most data corruptions that resulted in the branch condition

being satisfied, as any non-zero value would suffice.

To explain some of the values that were observed in the

resulting comparison register, we attached a JTAG debugger

to the board and examined the state of the system before the

loop was entered. For every case, 0x20003FE8 is the value

of SP, 0x48000028 and is the GPIO address that was written

to. Thus, 0x40007FD7 is likely a mix of the GPIO address

and some corruption (Table Ia). Similarly, for the while(a)
case, 0x20003FF6 is likely a mix of SP and some corruption

(Table Ib). Interesting, in the while(a!=0xD3B9AEC6)
case, 2 of the glitches resulted in the comparison register, R2,

being correctly set to the unlikely value of 0xD3B9AEC6,

which is not on the stack, but is only stored as intermediate

(Table Ic). This must mean that the LDR instruction was

corrupted to load the valid into the wrong register. Similarly,

the various 0x4 values are likely a residual from the address

in the register during a load. We were unable to identify any

obvious connections to the other values stored in the registers,

and can only assume that they are attributed to random flips.

B. Locating Optimal Parameters

We also investigated the best case scenario for glitching an

unprotected conditional branch. In this experiment, we sought

to identify glitch parameters that would have a 100% success

rate. To achieve this, our algorithm starts by scanning our

glitching parameters (i.e., target offset, width, and offset) with

a 10 cycle clock glitch, which encompasses every instruction

in the while loop. Once successful parameters are identified,

the algorithm then tests each individual clock cycle within the

10 clock-cycle range and recursively increases its precision

(i.e., 1
10 ∗ depth) until a 100% success rate (10 out of 10

attempts) is achieved. In fact, this algorithm proved to be

quite effective, locating the optimal parameters when attacking

a while(a) loop in less than 59 minutes. Indeed, the

algorithm achieved 7,031 successful glitches out of 36,869 in

its search for when using val != 0 as the comparator. When

applied to a while(a!=0xD3B9AEC6) loop (i.e., numbers

with large Hamming distance), the algorithm converged in 16

minutes with 901 successful glitches.

C. Multi-glitch Attacks

Previous work has proposed implementing redundant checks

to thwart glitching, which is based on the assumption that

successfully glitching multiple instructions is a significant

technical barrier for attackers [15], [76]. Indeed, multi-glitches

are significantly more difficult in practice and, in some in-

stances, can be impossible due to physical constraints. For

TABLE II: The number of successful partial and multi-glitch

attacks against three different branch guards implemented as

infinite while loops

while(!a) while(a) while(a!=0xD3B9AEC6)
Cycle Partial Full Partial Full Partial Full

0 77 12 83 24 23 7
1 20 2 19 - 2 -
2 2 - 1 - - -
3 124 87 - - - -
4 326 211 1 - - -
5 166 36 30 2 47 36
6 161 17 49 2 136 99
7 167 22 146 25 116 60

Total 1043 387 329 53 324 202
Total (%) 1.330% 0.494% 0.420% 0.068% 0.413% 0.258%

example, the time required to recharge a capacitor could be

greater than the time needed for the two glitches, which would

prohibit EM or voltage glitching. Moreover, many systems

have internal clocks, which thwart clock glitching, leaving

these more-bounded glitching techniques as the only options in

practice. We constructed an experiment to find the upper bound

on the effectiveness of triggering an identical glitch twice in

a row (i.e., the ideal condition for an attacker as the same

tuning parameters should work for both glitches) using clock

glitching. We used the same comparisons that we used in our

single glitch scenarios, but now with the trigger being reset,

triggered, and a second glitch inserted (i.e., two identical loops

back-to-back). We recorded the number of successful partial

glitches (i.e., the first glitch was successful but the second

was not) as well successful multi-glitches (i.e., both glitches

worked and the execution skipped both branch conditions).

The results from these experiments can be seen in Table II.
It is clear that multi-glitching is significantly more difficult

in practice than a single glitch. The partial glitch success

rates (i.e., only the first glitch succeeded) are similar to

those in our previous experiments: 1.330221%, 0.419600%,

and 0.413223%, while the multi-glitch success rates (i.e., the

second glitch was also successful) were significantly lower:

0.493572%, 0.067595%, and 0.257627% respectively. Requir-

ing a multi-glitch reduced the probability of a successful glitch

by factors of 6×, while(!a), 3×, while(a), and 1.6×,

while(a!=0xD3B9AEC6). While these results may seem

higher than previous work would indicate, this experiment was

constructed to present the best case scenario for a multi-glitch.

In practice, these factors would be significantly higher, since

the attacker would not have 2 perfect triggers, the comparisons

would likely not be identical, and there are numerous physical

limitations to generating multiple glitches in rapid succession.

The large gap between partial glitches and successful multi-

glitches is particularly interesting. This discrepancy leaves the

potential to not only make glitching more difficult but to detect
a glitching attempt, as a partial glitch introduces a logical

impossibility, but would not skip the instrumented checks.

D. Long Glitch Attacks

While the multi-glitch results are encouraging, clock glitch-

ing permits an even more powerful attack. Specifically, an

405

attacker can inject a glitch at every clock cycle corrupting

multiple contiguous instructions. Thus, we also tested the

efficacy of a long glitch attack (i.e., a glitch that is inserted

for multiple clock cycles). In this experiment, we started

by glitching 10 contiguous clock cycles (i.e., the minimum

number of clock cycles the two loops could possibly be

completed in), and varied the clock cycles up to 20. For

each number of repeated clock cycles, we varied the width

and offset of the glitch in the same way as our previous

experiments (9,801 glitching attempts per clock cycle range).

Despite the potential power of this attack, we observed

mixed results (see Table III). The condition that was previously

the most vulnerable, while(!a) faired much better against

this attack, with far fewer successful glitches observed. We

hypothesize that most successful glitching parameters, which

disproportionately affect clock cycle 4 (i.e., the compare

instruction), are simultaneously corrupting the instructions

before the comparator instructions and satisfying the exit

condition. In the multi-glitch case the register would have

contained 0, but in the long glitch case, it is likely that the

subsequent load was also glitched, disrupting the ideal con-

ditions for the previously observed single-clock-cycle attacks.

Conversely, the while(a) case appeared to be significantly

more susceptible to long glitch attacks, with over a 10×
increase in the success rate (i.e., from 0.068% to 0.7%). We

hypothesize that glitching so many load instructions could

cause the various load instructions to fail, which would write

0 into the register and satisfying the exit condition. The higher

number of success between 10 and 12 cycle glitches appears

to support this claim, as after 12 clock cycles, the glitch

would start to affect the compare and branch instructions of

the second loop.

The lack of successes for the while(a!=0xD3B9AEC6)
case coincides with our hypothesis that a glitch which simply

changes the value in the register is unlikely to succeed. It

appears that successful glitches against this case are corrupting

the comparison instruction, the branch instruction, or the actual

value loaded. In a multi-glitch scenario, the targeted glitch was

affecting the same clock cycle both times, against identical

code (e.g., a branch condition). However, in the long glitch

case, there are other instructions in the way that will also

get glitched, making it exceedingly unlikely that both of the

compare and branch instructions would be bypassed without

irrecoverable corruption.

VI. GLITCHING DEFENSES

While many glitching defenses have been proposed, few

have been implemented, and we are unaware of any tool

for generally applying these techniques. Thus, we present

GLITCHRESISTOR, the first automated, open-source tool for

implementing glitching defenses. GLITCHRESISTOR was im-

plemented using the LLVM Project to modify both the source

and compiled code (Clang and LLVM, respectively). This

enables GLITCHRESISTOR to support multiple architectures

with relatively low overhead. Indeed, many of the defenses

must be implemented as a compiler pass, since implementing

TABLE III: The number of successful long glitches against

three unique branch guards implemented as two subsequent

while loops, obtained by attempting all glitch offsets, widths,

and number of clock cycles using a powerful clock glitch

Cycles while(!a) while(a) while(a!=0xD3B9AEC6)

0-10 20 96 35
0-11 19 140 20
0-12 6 92 8
0-13 7 55 6
0-14 9 66 8
0-15 6 74 7
0-16 6 54 4
0-17 7 62 4
0-18 9 50 6
0-19 9 46 5
0-20 11 52 4

Total 109 787 107
Total (%) 0.101% 0.730% 0.0992%

them in source code would result in the compiler optimizing

them away (i.e., because they appear as logically impossible

or dead code). In this work, we only focused on the ARM

architecture, specifically the STM32 microcontroller, due to

its proliferation in embedded systems, its development support,

and the supporting glitching frameworks [54]. However, our

defenses work, without modification, on any architecture that

is supported by LLVM (e.g., MIPS, PowerPC, and RISC-V)

In general, software-based glitching defenses can be cate-

gorized into three broad categories: constant diversification,

redundancy, and random timing.

A. Constant Diversification

Ideally, GLITCHRESISTOR would ensure that the set of

enumerations (ENUMs) and return values would have a

maximum, minimum pairwise Hamming distance (i.e., the

minimum Hamming distance between all of the values would

be maximized) to minimize the chance of bit flips modifying

a value into a different valid value. However, this is unfor-

tunately an open coding theory problem in the general case,

i.e., A(n, d) [46]. Thus, GLITCHRESISTOR instead leverages

Reed-Solomon codes to generate values with large pairwise

Hamming distances. In theory, this implementation can gener-

ate codes such that the minimum pairwise Hamming distance

is b − �log2(c)� where b is the size of the value in bits

and c is the number of values being generated. However, we

used a more general purpose open-source implementation [45],

which provides a flexible, fast computation of Reed-Solomon

error codes. Our current implementation is configured with a

message size of two bytes (i.e., up to 216 unique values in a set)

and an ECC length equal to the size of values being generated

(e.g., 4 bytes for a typical ENUM). GLITCHRESISTOR then

generates a message for each number [1, count], where count
is the number of ENUMs in a particular definition, and uses the

generated ECC as the new value in the program code ensuring

a minimum pairwise Hamming distance of 8.

a) ENUM Rewriter: The ENUM Rewriter is the only

defense implemented as a clang source code rewriter tool.

This is because in the LLVM intermediate representation

(IR), used by a compiler pass, ENUMs will be replaced by

406

corresponding constant values, and it is hard to detect which

constant is the result of an ENUM expansion. Consequently,

it is hard to replace ENUMs using a compiler pass in a sound

manner. GLITCHRESISTOR first parses the abstract syntax

tree (AST) of all the source and header files to identify

ENUM declarations that have all of their values uninitialized.

Then, for each of the uninitialized ENUM declarations, a

set of Reed-Solomon codes is generated, and used as the

declarations. GLITCHRESISTOR does not modify partially or

fully initialized ENUM declarations, as they could represent

certain expected values, and changing the values might affect

the functionality of the firmware. Even for fully uninitialized

enumerators, there could be cases where a programmer might

assume default values for ENUMs (i.e., starting with 0), as

defined by the C standard [25]. In such cases, without using a
sound interval analysis [47], ENUM Rewriter might break the
program’s functionality. To handle this, we provide an option

in our implementation that will disable ENUM Rewriter.

Developers could use this option if they made any assumptions

about the default values for ENUMs in the target codebase.

b) Non-trivial Return Codes: GLITCHRESISTOR finds

all of the functions that only return constant values using the

LLVM ModulePass. For such functions, GLITCHRESISTOR

examines how its callers use the return values. When they

are exclusively used directly in branches (i.e., compared to

a constant) GLITCHRESISTOR replaces the return value and

the constant that it is compared to with the hard-to-glitch

values from our Reed-Solomon implementation. Our decision

to only instrument functions that return constants reflects

the fundamental difficulty in calculating all of the possible

computed return values. Instrumentation that deals with such

corner cases would be significantly more intrusive, and likely

unsound. Our decision to only instrument return values that

are used directly in branches could be relaxed, though only

to a certain extent. If the instrumented constant is stored in

an aliased memory location, significantly more heavyweight

instrumentation would be required to dynamically track the

value and update all of the references appropriately. Despite

these minor limitations, our return code protection instruments

a reasonable number of functions in practice (i.e., 24 out of

312 total functions in our evaluated firmware).

B. Redundancy

GLITCHRESISTOR’s redundancy defenses are implemented

as an LLVM compiler pass that replicates existing code to

ensure that no single-glitch attack will be capable of corrupting

the execution. We ensure that code added for redundancy

is not optimized out by other compiler passes by marking

the inserted load and store instructions as volatile. These

checks are capable of detecting glitches, as the injected check

will never be false under normal operating conditions. Others

have proposed and tested simple instruction duplication [18],

concluding that instruction duplication alone is likely not a

cure-all solution; hence the multi-pronged approach.

a) Data Integrity: GLITCHRESISTOR’s data integrity

protection is implemented by performing a ModulePass, which

locates any global variables that were marked as sensitive by

the developer (e.g., by listing them in a configuration file).

Once identified, these sensitive variables are replicated, and a

second variable, which is used for verification, is allocated in

a separate region of memory to ensure that it is not physically

co-located with the initial variable. When a sensitive variable

is written to memory, it is inverted (i.e., xored with ¬0 of

the appropriate size), and this integrity value is stored in the

complementary integrity variable. Then, when the value is later

read from memory, both the original variable and the integrity

value are read from memory and the operation will continue

if and only if var⊕ varIntegrity == ¬0, otherwise a glitch

detection function will be called.

b) Branches and Loops: GLITCHRESISTOR implements

two FunctionPass transformations to replicate conditional

branch conditions. The first replicates the true condition for

every conditional branch in the control-flow graph (CFG).

When replicating the branch condition, GLITCHRESISTOR

also replicates any instructions that are needed to calculate the

comparison (e.g., loading a value from memory, mutating it,

and comparing it to an immediate). However, not every instruc-

tion can be replicated. For example, volatile variables, function

calls, and LLVM PHINodes cannot be replicated because

they may have adverse side-effects, or are likely to change

between checks. This redundant comparison is computed to be

the opposite of the initial branch condition (e.g., if (a ==
5) would become if (¬a == ¬5)), which ensures that the

same bit flips repeated twice would not be able to bypass both

checks. This defense assumes that security-critical operations

are typically guarded by a conditional branch and that the

default, false, branch is not as important to protect, as it will

be taken most of the time. However, this assumption does not

hold with loops. Thus, GLITCHRESISTOR performs a second

pass to add the same redundant instrumentation to the false
branch of loop guards.

c) Detection Reaction: GLITCHRESISTOR does not dic-

tate an action to be taken when a glitch is detected, but

instead provides a function that is trivially implemented by the

developer. In fact, the specific reaction to a detected glitching

attempt is necessarily application specific. For example, on

a gaming system, it may be sufficient to simply report the

attempt or disable updates, whereas a critical military system

may want to react more assertively by completely destroying

the data or device.

1) Random Timing: GLITCHRESISTOR currently injects

randomness in the execution by injecting a random busy loop

at the end of each basic block. The current implementation is

a simple linear congruential generator (LCG) with the input

parameters used by glibc, and each invocation executes

between 0 and 10 no-operation (NOP) instructions. To ensure

that any observable trigger is necessarily before the random

function, the delay function is injected at the end of every basic

block that ends in a SwitchInst or BranchInst (i.e.,
right before a branch). This code injection was implemented

as an LLVM FunctionPass. Functions can be easily omitted

when the module is configured in opt-out mode or included

407

when it is configured in opt-in mode. Our seed is incremented,

and written to flash, during the first invocation of the function

(on our STM32 board, this was implemented in 10 lines of

portable C code). GLITCHRESISTOR modifies the state of

the random function immediately after the board boots (even

before the board initializes) and writes the new seed to non-

volatile memory to thwart repeated attempts against the same

seed. This initialization code is also instrumented by the other

defenses, which are capable of detecting glitching attempts.

VII. EVALUATION OF DEFENSES

GLITCHRESISTOR was both developed and evaluated on

real hardware, using the STM32 suite of embedded devices.

Two research questions arise with respect to defenses:

RQ6 How much overhead, both size and run-time, is incurred

when using each GLITCHRESISTOR defense?

RQ7 How effective are the various GLITCHRESISTOR de-

fenses at both mitigating and detecting glitching attacks?

A. Overhead

To evaluate the overhead imposed by GLITCHRESIS-

TOR we first built a simple, indicative firmware using the

STM32CubeMX code generator. This firmware initializes the

board, and then loops forever, reading the number of ticks

(i.e., milliseconds) since the board was booted and printing out

performance information after every loop iteration using the

universal asynchronous receiver-transmitter (UART) interface.

The variable that is used to store the tick counter was marked

as a sensitive variable, and two functions that use ENUMs and

constant return values are used to check the tick value. The

firmware will call a success function if the tick value is ever

equal to 0, which was designed to be impossible.

The specific board that we used in this experiment was an

STM Nulceo 64 with an ARM Cortex-M4 (STM32F303RE)2.

The default project, configured to be built with a Makefile
was easily augmented to be built with LLVM and the ap-

propriate GLITCHRESISTOR modules using a patching script

that is provided with GLITCHRESISTOR. To ensure that there

was no bias in the evaluation, we only measure the boot time

of the system, as this code was provided by the CubeMX

suite, and is used in numerous real systems. Moreover, the

most security-critical code on embedded systems (i.e., when

GLITCHRESISTOR would provide the most value) is typically

the bootloader. Each firmware was built using the default -Og
optimization, which provides a worst case size. Eventually, we

want to use existing static analysis techniques [40], [39] to

further reduce the regions of code that need to be instrumented.

1) Run-time: To evaluate the boot process in a chip-

agnostic way, we use the number of CPU cycles as our metric

for comparison. This was done by enabling the data watchpoint

and trace unit (DWT) on the board, and then reading the CPU

once when the board is reset, and again after the hardware

abstraction layer (HAL) and board had completely initialized.

2This is different from our glitching examples, because this board is more
readily available and requires no special hardware to test with.

TABLE IV: Time overhead imposed by each defense on the

boot time of a standard STM32 firmware image (clock cycles)

Defense Clock Cycles (Avg.) % Increase Constant % Adjusted
None 1736 0.00% 0 0.00%

Branches 1933 11.35% 0 11.35%
Delay 184388 10521.45% 177849 276.69%

Integrity 1737 0.06% 0 0.06%
Loops 1737 0.06% 0 0.06%

Returns 1739 0.17% 0 0.17%

All\Delay 2082 19.93% 0 19.93%
All 184761 10542.93% 177993 289.88%

Since our board is doing relatively simple operations, it only

takes 1,736 clock cycles to boot in the un-instrumented case.

We evaluated each defense independently, as they can be used

à la carte. The results are shown in Table IV.

Injecting delays incurs a substantial constant overhead, as

it must both read and write from flash memory the first

time that it is called to update the seed to ensure that the

pseudo-random number generator (PRNG) is unpredictable at

every boot. When this constant overhead is accounted for,

instrumenting every basic block in the boot process incurs a

277% overhead. However, in practice, a developer may want

to use this particular feature in an “opt-in” way, such that it

will only be applied to optionally annotated functions. Without

the delay defenses enabled on every basic block, the run-time

overhead incurred, in terms of clock cycles, is less than 20%.

Nevertheless, both of these overheads are likely acceptable

in practice to protect the critical code regions in a deployed

embedded system.

2) Size: Since most embedded systems have strict con-

straints on their size, weight, and power (SWaP), we also enu-

merate how much additional code is inserted by GLITCHRE-

SISTOR. Table V depicts the various code segments that

are affected by each defense in GLITCHRESISTOR. Again,

injecting a delay into every basic block incurs the largest

overhead (13%). Meanwhile, the other defenses only combine

for a 15% increase in size, most of which is in the .text
segment. While modifying constant values (i.e., returns and

ENUMs) should, in theory, be “free,” we actually see that they

increase the size of the binary slightly because the transformed

values are all necessarily four bytes, while smaller values can

be encoded as a single byte. While these overheads may seem

large after an initial glance, it is a small price to pay for the

protection provided.

TABLE V: Size overhead imposed by each individual defense

on a standard STM32 firmware built using CubeMX (bytes)

Defense text text (%) data data (%) bss bss (%) total total (%)
None 6456 120 1728 8304
Branches 6956 7.74% 120 0.00% 1728 0.00% 8804 6.02%
Delay 7512 16.36% 128 6.67% 1768 2.31% 9408 13.29%
Integrity 6840 5.95% 124 3.33% 1732 0.23% 8696 4.72%
Loops 6840 5.95% 124 3.33% 1732 0.23% 8696 4.72%
Returns 6460 0.06% 120 0.00% 1728 0.00% 8308 0.05%

All\Delay 7700 19.27% 124 3.33% 1732 0.23% 9556 15.08%
All 9144 41.64% 132 10.00% 1768 2.31% 11044 33.00%

408

B. Effectiveness of Defenses

When testing these defenses against real glitches, we created

both a worst case and best case scenario. In both cases

we marked our variables as volatile, which hinders the

effectiveness of the defenses (i.e., they should perform better
in practice). This is because the volatile variable cannot

be read twice, which means that if the value were glitched

successfully during the first load it would pass all checks.

Thus, this analysis should provide a reasonable lower-bound

for the effectiveness of these defenses in practice (i.e., their

ability to protect any code). Similarly, in both experiments,

we attempted three different attack scenarios: a single glitch

attack, where the clock cycle being glitched was varied (be-

tween 0 and 10); a long glitch attack, where the number of

clock cycles being glitched was varied (between 10 and 100 at

increments of 10); and a windowed long glitch attack, where

the number of clock cycles was fixed at 10 (the best case

in our previous experiment), but the initial clock cycle was

varied (between 0 and 10 at increments of 10). All of the

experiments had a perfect trigger, as before. These attacks are

far more powerful than what an attacker would have access

to on a real system, but, again, were constructed to provide a

lower bound for the efficacy of the defenses.

1) while(!a) (worst case): The while(!a) condition

was the most vulnerable against single-glitch attacks, and was

thus chosen as our worst case scenario. As in Section V, we

glitched the infinite loop, attempting to break out of it with

the various defenses compiled into the code. While it should

be theoretically impossible to defeat these defenses with a

single glitch, the volatile variable leaves the possibility

of successful glitching the register value and satisfy both

conditional branches. The results from the three glitching

attacks against this code are shown in Table VI.

The defenses turned out to be highly effective against

the single-glitch attack, with success rates plummeting to

less than 0.01%. Moreover, the detection rate is remarkably

high (over 98%) both with and without the randomization

defense enabled. This result is somewhat unsurprising, as these

defenses were specifically constructed to ensure that no single

incorrect branch would result in a compromised system [16].

However, the detection rates are especially encouraging with

respect to real-world use cases for these defenses. The results

are similarly positive against the more powerful long glitch

attacks, with all of the defenses touting detection rates above

79%. It appears that the 10 cycle, a windowed glitch is far

more effective against systems that do not have randomization

enabled, since the more targeted window produces fewer

detectable side effects. However, with randomization enabled,

this attack performs slightly worse than the longer long glitch

attack, likely due to the fact this shorter glitch window is more

likely to corrupt a branch condition in the random function,

which would be detected. On the contrary, since the long glitch

attack will affect every clock cycle after the trigger, it can also

glitch all of the detection code that it may touch.

TABLE VI: Successful glitches and detections against an

infinite loop and a branch condition with GLITCHRESISTOR

defenses. Successes(%): suc.
tot. , Detections(%): det.

det.+suc.

while(!a) if(a==SUCCESS)

All All\Delay All All\Delay

Si
ng

le Total 107,811 107,811

Successes 10 (0.00928%) 4 (0.00371%) - 1 (0.000928%)

Detections 653 (98.4%) 1,032 (99.6%) 351 (100%) 95 (95.4%)

L
on

g Total 98,010 98,010

Successes 258 (0.263%) 262 (0.267%) 3 (0.00306%) 44 (0.0449%)

Detections 981 (79.2%) 649 (71.2%) 1,143 (99.7%) 274 (86.2%)

10
C

yc
le

s

Total 107,811 107,811

Successes 227 (0.211%) 1,281 (1.188%) 10 (0.00557%) 2 (0.00186)

Detections 1,858 (89.1%) 992 (43.6%) 2,019 (99.7%) 1016 (99.8%)

2) if(a == SUCCESS) (best case): In real code, infinite

while loops are unlikely to guard security-critical code. Thus,

to provide a more fair evaluation of the proposed defenses, we

also attempted the three attacks against a simple if statement

that is more indicative of how programmers write code. To

ensure that all of the proposed defenses would be used, and

to use the most resilient branch condition from Section V-C,

we created an uninitialized enum variable: SUCCESS, which

was initialized to enum FAILURE. This scenario should

be the best case for the defenses (modulo the volatile
variable), as the window for the a successful glitch is now

quite narrow (i.e., 8 clock cycles). The same attacks that from

Section VII-B1 where used against this if statement; the

results are shown in Table VI.
Indeed, the real power of these software-only defenses is

exhibited in this case — only one single glitch attack was

successful, with detection rates above (95%). The effectiveness

of the long glitch attacks was similarly diminished. With all

of the defenses enabled, the best attack was only able to

achieve a 0.00557% success rate, with over 2,000 detections

(a 99.7%) detection rate. Without the randomization defense

enabled, the best attack was able to achieve a success rate of

0.0449%, with an 86.2% detection rate. While this experiment

was constructed to be the best case scenario for the defenses, it

is certainly not a corner case in real world code, demonstrating

some real promise for these types of software-only defense

against glitching in practice.

VIII. RELATED WORK

In this section, we focus on work related to glitching de-

fenses. Most of the hardware-based approaches are specific to

a fault type. They require a precise sensitivity model [27], [84],

[80], which is non-obvious for certain fault types such as those

induced by an electromagnetic pulse. Recent work by Yuce

et al. [85] shows that most of the hardware-based defenses

are ineffective in the presence of multi-fault glitches (e.g.,
voltage and EM). In this work, we focus on software-based

defenses and develop a generic instrumentation technique that

defends arbitrary software against various faults. Previous

409

TABLE VII: Comparison of GLITCHRESISTOR with existing

software-based glitching defenses. Each technique is evaluated

by checking whether the desirable properties are present (�)

or absent (�).

Software-Based
Defenses Generic Extensible Backward

Compatible
Defense Techniques

Constant
Diversification

Data
Integrity

Control flow
Hardening

Random
Delay

Data Encoding [37], [14] � � � � � � �
CAMFAS [17] � � � � � � �

Loop Hardening [60] � � � � � � �
IIR [58] � � � � � � �

CountCompile [11] � � � � � � �
CountC [36] � � � � � � �
SWIFT [63] � � � � � � �
CFCSS [55] � � � � � � �

GLITCHRESISTOR � � � � � � �

work [49], proposed and evaluated two software-only defenses

(one which replicates instructions for redundancy [50] and

the other which detects glitches [10]) for bl and ldr on

ARM systems against electromagnetic fault injection (EMFI)

glitching. These defenses are quite similar to our techniques

for redundancy, and had similar success when they were eval-

uated. However, they noted that the countermeasure needed to

be extended to a larger set of instructions and architectures,

which GLITCHRESISTOR does by leveraging LLVM. Recent

work [15] independently implemented, and evaluated branch

duplication techniques in the context of spurious bit flips

due to hardware malfunctions. Similar work [36] proposed

a CFI method which implements a counter to detect if two

more C source lines have been “skipped.” However, this

defense is especially heavyweight since it injects code after

every instruction and it does not account for the possibility

of a multi-glitch. Another work, CAMFAS [17], that uses

SIMD [28] to replicate almost all instructions to detect fault

attacks also suffers from the problem of being cumbersome

and requires special hardware.

Most of the existing techniques are either application spe-

cific (e.g., AES) or not backward compatible (i.e., require the

code of an entire program to be changed). On the other hand,

GLITCHRESISTOR is generic, can be applied to any code, is

backward compatible, and can be applied to selected program

regions (e.g., certain sensitive functions). GLITCHRESISTOR

is based on the LLVM framework and is easily extended with

other defenses. Table VII shows various software-based de-

fenses in comparison with GLITCHRESISTOR demonstrating

its holistic approach for defending against glitching.

Others have proposed a hybrid software and hardware

approach where functions can be protected by inserting an

assert function in the source, which will be updated with

an LLVM pass to confer with the hardware and verify the

“signature” of the function being executed [80]. GLITCHRE-

SISTOR is differentiated by its fully-automated instrumentation

and lack of mandatory source-code annotations.

Emulating glitching attacks has also been done previously.

For example, one system implemented a fault injection em-

ulator in the context of writing fault-tolerant code, but did

not examine malicious glitching attacks [31]. Others similarly

implemented a QEMU-based fault injection emulator [21]

and glitch simulator [75] have been created to evaluate fault-

tolerant techniques, both of which achieved mixed results.

Nevertheless, since glitching is a physical phenomena, none

of these emulators can adequately provide the realism of our

real-world evaluation.

Previous work [82] presented comprehensive suggestions

for source code modifications to make code glitch resistant,

which our defenses are based on. Similarly, more recent

work [81] advocated that “software mitigations like execution

flow control, redundancy or random delays should be imple-

mented” in embedded firmware. However, GLITCHRESISTOR

is the first open-source framework for experimenting with

various defenses and to test these defenses against attacks on

real hardware, grounding our results and providing a more

realistic view of their practical efficacy.

IX. CONCLUSION

In this work, we present GLITCHRESISTOR, an automated,

open-source software-only defense framework. Our emulated

experiments confirm that bit-level corruption can “skip” con-

trol flow instructions in ARM with a high likelihood in theory
(60% when flipping to 0 and 30% when flipping to 1).

Our real-world experiments demonstrated that glitching can

be highly effective when all of the variables are controlled

(e.g., 100% success rate), and that the values being compared

affect the glitchability of a particular branch instruction (e.g.,
while(!a) was 2× more susceptible to glitching than

while(a)). Moreover, we provide insights into how the

control flow instructions are being skipped (e.g., the register

data being corrupted versus the execution being corrupted).

We also demonstrate the complexity involved with multi-

glitch attacks, whose difficultly is the basis of many proposed

defenses. Finally, we show that GLITCHRESISTOR, with it’s

various software-only glitching defenses are capable of com-

pletely eliminating single-glitch attacks in practice and can

minimize the likelihood of a successful multi-glitch attack ,

while detecting failed glitching attempts at a high rate.

ACKNOWLEDGEMENTS

We would like to acknowledge Fabian Monrose for his

invaluable feedback on this work, Timothy Sherwood for his

unwavering support, and our reviewers that helped to focus

and strengthen this work through their comments. Similarly,

we would like to thank Colin O’Flynn and the various experts

at IBM Research and Riscure that we talked with for taking

the time to help us construct realistic attacks and defenses.

This material is based upon work supported by the Office of

Naval Research under Award No. N00014-17-1-2011, by the

Department of Homeland Security under Award No. FA8750-

19-2-0005, and by the IBM Ph.D. Fellowship. Any opinions,

findings, and conclusions or recommendations expressed in

this publication are those of the author(s) and do not neces-

sarily reflect the views of the Office of Naval Research, the

Department of Homeland Security, or IBM Research.

410

REFERENCES

[1] “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/.

[2] A. ARM7TDMI, “Technical reference manual,” Advanced RISC Ma-
chines Ltd.,(15 May 2003).

[3] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted
run-time monitoring for secure program execution on embedded pro-
cessors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 12, pp. 1295–1308, 2006.

[4] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus,”
in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography.
IEEE, 2011, pp. 105–114.

[5] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, 2006.

[6] G. Barbu, G. Duc, and P. Hoogvorst, “Java card operand stack: fault
attacks, combined attacks and countermeasures,” in International Con-
ference on Smart Card Research and Advanced Applications. Springer,
2011, pp. 297–313.

[7] G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on java card 3.0
combining fault and logical attacks,” in International Conference on
Smart Card Research and Advanced Applications. Springer, 2010, pp.
148–163.

[8] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault
attacks on the rsa cryptosystem,” in 2009 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). IEEE, 2009, pp. 23–31.

[9] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
“Low voltage fault attacks to aes,” in 2010 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST). IEEE, 2010,
pp. 7–12.

[10] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
“Countermeasures against fault attacks on software implemented aes:
effectiveness and cost,” in Proceedings of the 5th Workshop on Embed-
ded Systems Security. ACM, 2010, p. 7.

[11] T. Barry, D. Couroussé, and B. Robisson, “Compilation of a counter-
measure against instruction-skip fault attacks,” in Proceedings of the
Third Workshop on Cryptography and Security in Computing Systems,
2016, pp. 1–6.

[12] G. Bouffard, J. Iguchi-Cartigny, and J.-L. Lanet, “Combined software
and hardware attacks on the java card control flow,” in Interna-
tional Conference on Smart Card Research and Advanced Applications.
Springer, 2011, pp. 283–296.

[13] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the glitch: Optimiz-
ing voltage fault injection attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 199–224, 2019.

[14] J. Breier, X. Hou, and Y. Liu, “On evaluating fault resilient encoding
schemes in software,” IEEE Transactions on Dependable and Secure
Computing, 2019.

[15] C.-K. Chang, G. Li, and M. Erez, “Evaluating compiler ir-level se-
lective instruction duplication with realistic hardware errors,” in 2019
IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme Scale
(FTXS). IEEE, 2019, pp. 41–49.

[16] T. Chen, “Guarding against physical attacks: The xbox one story,” https:
//www.platformsecuritysummit.com/2019/speaker/chen/, October 2019.

[17] Z. Chen, J. Shen, A. Nicolau, A. Veidenbaum, N. F. Ghalaty, and
R. Cammarota, “Camfas: A compiler approach to mitigate fault attacks
via enhanced simdization,” in 2017 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE, 2017, pp. 57–64.

[18] L. Cojocar, K. Papagiannopoulos, and N. Timmers, “Instruction dupli-
cation: Leaky and not too fault-tolerant!” in International Conference
on Smart Card Research and Advanced Applications. Springer, 2017,
pp. 160–179.

[19] A. Cui and R. Housley, “BADFET: Defeating modern secure boot using
second-order pulsed electromagnetic fault injection,” in 11th USENIX
Workshop on Offensive Technologies (WOOT 17), 2017.

[20] M. Dadashi, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan,
“Hardware-software integrated diagnosis for intermittent hardware
faults,” in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2014, pp. 363–374.

[21] F. de Aguiar Geissler, F. L. Kastensmidt, and J. E. P. Souza, “Soft error
injection methodology based on qemu software platform,” in 2014 15th
Latin American Test Workshop-LATW. IEEE, 2014, pp. 1–5.

[22] E. DeBusschere and M. McCambridge, “Modern game console exploita-
tion,” Technical Report, Department of Computer Science, University of
Arizona, 2012.

[23] C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, and
R. Primas, “Statistical ineffective fault attacks on masked aes with
fault countermeasures,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2018,
pp. 315–342.

[24] J. W. Duran and S. Ntafos, “A report on random testing,” in Proceedings
of the 5th international conference on Software engineering. IEEE
Press, 1981, pp. 179–183.

[25] I. O. for Standardization, “Iso/iec 9899:tc3: Programming languages -
c,” 2007.

[26] A. Galauner, “Glitching the switch,” https://media.ccc.de/v/c4.
openchaos.2018.06.glitching-the-switch#t=82, June 2018.

[27] N. F. Ghalaty, A. Aysu, and P. Schaumont, “Analyzing and eliminating
the causes of fault sensitivity analysis,” in 2014 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2014, pp. 1–6.

[28] R. J. Gove, K. Balmer, N. K. Ing-Simmons, and K. M. Guttag, “Multi-
processor reconfigurable in single instruction multiple data (simd) and
multiple instruction multiple data (mimd) modes and method of opera-
tion,” May 18 1993, uS Patent 5,212,777.

[29] J. Grand and J. Friday, “Advanced hardware hacking techniques,”
DEFCON, vol. 12, p. 59, 2004.

[30] J. Gratchoff, N. Timmers, A. Spruyt, and L. Chmielewski, “Proving the
wild jungle jump,” 2015.

[31] A. Höller, G. Macher, T. Rauter, J. Iber, and C. Kreiner, “A virtual fault
injection framework for reliability-aware software development,” in 2015
IEEE International Conference on Dependable Systems and Networks
Workshops. IEEE, 2015, pp. 69–74.

[32] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[33] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in ACM SIGARCH
Computer Architecture News, vol. 42, no. 3. IEEE Press, 2014, pp.
361–372.

[34] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[35] T. Korak and M. Hoefler, “On the effects of clock and power supply
tampering on two microcontroller platforms,” in 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography. IEEE, 2014, pp. 8–17.

[36] J.-F. Lalande, K. Heydemann, and P. Berthomé, “Software countermea-
sures for control flow integrity of smart card c codes,” in European
Symposium on Research in Computer Security. Springer, 2014, pp.
200–218.

[37] M. M. Latif, R. Ramaseshan, and F. Mueller, “Soft error protection
via fault-resilient data representations,” North Carolina State University.
Dept. of Computer Science, Tech. Rep., 2007.

[38] N. Lawson, “How the ps3 hypervisor was hacked,” https://rdist.root.org/
2010/01/27/how-the-ps3-hypervisor-was-hacked/, 2010.

[39] G. Li, Q. Lu, and K. Pattabiraman, “Fine-grained characterization
of faults causing long latency crashes in programs,” in 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 2015, pp. 450–461.

[40] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 27–38.

[41] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[42] Y. Lu, “Attacking hardware aes with dfa,” https://yifan.lu/images/2019/
02/Attacking Hardware AES with DFA.pdf, Februrary 2019.

[43] ——, “Injecting software vulnerabilities with voltage glitching,” arXiv
preprint arXiv:1903.08102, 2019.

[44] Y. Lu and Davee, “Viva la vita vida: Hacking the most secure handheld
console,” https://media.ccc.de/v/35c3-9364-viva la vita vida, Decem-
ber 2018.

[45] M. Lubinets, “Reed solomon bch encoder and decoder,” https://github.
com/mersinvald/Reed-Solomon, Februrary 2016.

411

[46] M. Milshtein, “A new two-error-correcting binary code of length 16,”
Cryptography and Communications, pp. 1–5, 2019.

[47] R. E. Moore, R. B. Kearfott, and M. Cloud, “Introduction to interval
analysis,” 2009.

[48] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, 2013, pp. 77–88.

[49] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encrenaz,
“Experimental evaluation of two software countermeasures against fault
attacks,” in 2014 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST). IEEE, 2014, pp. 112–117.

[50] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal veri-
fication of a software countermeasure against instruction skip attacks,”
Journal of Cryptographic Engineering, vol. 4, no. 3, pp. 145–156, 2014.

[51] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20), 2020.

[52] A. Q. Nguyen and H. V. Dang, “Unicorn: Next generation cpu emulator
framework,” in Proceedings of the 2015 Blackhat USA conference, 2015.

[53] C. O’Flynn, “Fault injection using crowbars on embedded systems.”
IACR Cryptology ePrint Archive, vol. 2016, p. 810, 2016.

[54] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer,
2014, pp. 243–260.

[55] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE transactions on Reliability, vol. 51, no. 1,
pp. 111–122, 2002.

[56] R. Omarouayache, J. Raoult, S. Jarrix, L. Chusseau, and P. Maurine,
“Magnetic microprobe design for em fault attack,” in 2013 International
Symposium on Electromagnetic Compatibility. IEEE, 2013, pp. 949–
954.

[57] S. Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic fault
injection: the curse of flip-flops,” Journal of Cryptographic Engineering,
vol. 7, no. 3, pp. 183–197, 2017.

[58] C. Patrick, B. Yuce, N. F. Ghalaty, and P. Schaumont, “Lightweight
fault attack resistance in software using intra-instruction redundancy,” in
International Conference on Selected Areas in Cryptography. Springer,
2016, pp. 231–244.

[59] F. Project, “The xbox 360 reset glitch hack,” https://free60project.github.
io/wiki/Reset Glitch Hack.html.

[60] J. Proy, K. Heydemann, A. Berzati, and A. Cohen, “Compiler-assisted
loop hardening against fault attacks,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 14, no. 4, pp. 1–25, 2017.

[61] N. A. Quynh, “Capstone: Next generation disassembly framework,”
Black Hat USA, 2014.

[62] ——, “Keystone: Next generation assembler framework,” Black Hat
USA, 2016.

[63] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in International Sympo-
sium on Code Generation and Optimization. IEEE, 2005, pp. 243–254.

[64] L. Riviere, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer, and L. Sauvage,
“High precision fault injections on the instruction cache of ARMv7-
M architectures,” in 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 2015, pp. 62–67.

[65] F. Rodrı́guez, J. C. Campelo, and J. J. Serrano, “A watchdog processor
architecture with minimal performance overhead,” in International Con-
ference on Computer Safety, Reliability, and Security. Springer, 2002,
pp. 261–272.

[66] F. Rodrı́guez and J. J. Serrano, “Control flow error checking with isis,” in
International Conference on Embedded Software and Systems. Springer,
2005, pp. 659–670.

[67] T. Roth, “TrustZone-M(eh): Breaking ARMv8-M’s security,” in The 36th
Chaos Communication Congress (36C3), December 2019.

[68] G. T. H. G. Roussel-Tarbouriech, N. Menard, T. True et al.,
“Methodically defeating nintendo switch security,” arXiv preprint
arXiv:1905.07643, 2019.

[69] J.-M. Schmidt and C. Herbst, “A practical fault attack on square and
multiply,” in 2008 5th Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2008, pp. 53–58.

[70] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, 2015.

[71] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in International workshop on cryptographic hardware and embedded
systems. Springer, 2002, pp. 2–12.

[72] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: sanitizing for security,” IEEE Security and Privacy,
2019.

[73] C. Spensky, “Analyzing and securing embedded systems,” Ph.D. disser-
tation, UC Santa Barbara, 2020.

[74] A. Spruyt, “Building fault models for microcontrollers,” University of
Amsterdam, Amsterdam, Tech. Rep, pp. 2011–2012, 2012.

[75] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, “Comprehen-
sive analysis of software countermeasures against fault attacks,” in 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2013, pp. 404–409.

[76] N. Timmers and C. Mune, “Escalating privileges in linux using voltage
fault injection,” in 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). IEEE, 2017, pp. 1–8.

[77] N. Timmers and A. Spruyt, “Bypassing secure boot using fault injec-
tion,” Black Hat Europe, vol. 2016, 2016.

[78] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM
using fault injection,” in 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE, 2016, pp. 25–35.

[79] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical
optical fault injection on secure microcontrollers,” in 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography. IEEE, 2011, pp.
91–99.

[80] M. Werner, E. Wenger, and S. Mangard, “Protecting the control flow of
embedded processors against fault attacks,” in International Conference
on Smart Card Research and Advanced Applications. Springer, 2015,
pp. 161–176.

[81] N. Wiersma and R. Pareja, “Safety!= security: On the resilience of
asil-d certified microcontrollers against fault injection attacks,” in 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
IEEE, 2017, pp. 9–16.

[82] M. Witteman and M. Oostdijk, “Secure application programming in the
presence of side channel attacks,” in RSA conference, vol. 2008, 2008.

[83] A. G. Yanci, S. Pickles, and T. Arslan, “Detecting voltage glitch attacks
on secure devices,” in 2008 Bio-inspired, Learning and Intelligent
Systems for Security. IEEE, 2008, pp. 75–80.

[84] B. Yuce, N. F. Ghalaty, C. Deshpande, C. Patrick, L. Nazhandali, and
P. Schaumont, “Fame: Fault-attack aware microprocessor extensions for
hardware fault detection and software fault response,” in Proceedings of
the Hardware and Architectural Support for Security and Privacy 2016,
2016, pp. 1–8.

[85] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure em-
bedded software: Threats, design, and evaluation,” Journal of Hardware
and Systems Security, vol. 2, no. 2, pp. 111–130, 2018.

412

