GPU Travelling: Efficient Confidential Collaborative Training
with TEE-Enabled GPUs

Shixuan Zhao
The Ohio State University
Columbus, OH, USA
zhao.3289@buckeyemail.osu.edu

Enriquillo Valdez
IBM Research
Yorktown Heights, NY, USA
rvaldez@us.ibm.com

Abstract

Confidential collaborative machine learning (ML) enables multiple
mutually distrusted data holders to jointly train an ML model while
preserving the confidentiality of their private datasets due to regula-
tory or competitive reasons. However, existing works need frequent
data and model exchanges during training via slower conventional
links. They face increasing challenges due to the exponentially
growing sizes of models and datasets in modern training workloads
like large language models (LLMs), resulting in prohibitively high
communication costs. In this paper, we propose a novel mechanism
called GPU Travelling that leverages recently emerged confidential
GPUs. With our rigorous design, the GPU can securely travel to
the specific data holder to load the dataset directly into the GPU’s
protected memory and then return for training, eliminating the
need for data transmission while ensuring confidentiality up to a
data-centre level. We developed a prototype using Intel TDX and
NVIDIA H100 and evaluated its performance on llm.c, a CUDA-
based LLM training project, and demonstrated the performance
and feasibility while maintaining strong security guarantees. The
results showed at least 4x speed improvement when transmitting a
512 MiB dataset chunk versus conventional transmission.

CCS Concepts

+ Security and privacy — Systems security; « Computing
methodologies — Distributed artificial intelligence; « Computer
systems organization — Distributed architectures.

Keywords
TEE; Collaborative ML; Confidential Computing

ACM Reference Format:

Shixuan Zhao, Zhongshu Gu, Salman Ahmed, Enriquillo Valdez, Hani
Jamjoom, and Zhiqiang Lin. 2025. GPU Travelling: Efficient Confidential
Collaborative Training with TEE-Enabled GPUs. In Proceedings of the 2025
ACM SIGSAC Conference on Computer and Communications Security (CCS
’25), October 13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3719027.3765029

@0oe

CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765029

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Zhongshu Gu
IBM Research
Yorktown Heights, NY, USA
zgu@us.ibm.com

Hani Jamjoom
IBM Research
Yorktown Heights, NY, USA
jamjoom@us.ibm.com

2653

Salman Ahmed
IBM Research
Yorktown Heights, NY, USA
sahmed@ibm.com

Zhiqiang Lin
The Ohio State University
Columbus, OH, USA
zlin@cse.ohio-state.edu

1 Introduction

With the continued advancement of Machine Learning (ML)
systems, data security and confidentiality have become criti-
cal [41, 48]. This challenge is notably amplified in collaborative ML
computations that work by cooperation between multiple mutually
distrusting data holders. Under this context, participating data
holders are often reluctant or even forbidden to share sensitive
datasets due to privacy [53], regulatory [35], copyright [18], or
competitive advantage.

Confidential computing has emerged as a viable and cost-
effective solution to offer confidential ML by providing a trusted
execution environment (TEE) that ensures data confidentiality and
integrity [57, 58]. It encapsulates sensitive data and computation
within a protected environment while also enabling remote attes-
tation to verify the authenticity and integrity of the computing
platform. For traditional CPU-bound workloads, hardware TEEs
like AMD SEV [31] and Intel TDX [8, 26] offer confidential virtual
machines (CVMs) to protect them and are widely available in com-
mercial cloud platforms [1, 4, 19, 25]. The recent introduction of
NVIDIA Confidential GPUs extends the trust boundary beyond
CPUs, making confidential ML practical when combined with a
CVM [39]. By allowing computations to be executed within a GPU
TEE, this technology significantly enhances security guarantees for
running Al workloads.

However, we find currently there are three major problems
when using confidential computing with collaborative ML:

1. Scalability in Distributed Collaborative Training with
Large Models. Modern ML models, particularly Large Language
Models (LLMs), are characterised by their gigantic sizes, with param-
eter counts reaching over 600 billion [44]. Conventional distributed
collaborative training schemes, such as federated learning (FL) and
peer-to-peer (P2P) learning, require frequent aggregation and redis-
tribution of locally trained models or updates, causing substantial
communication overheads, and can be worsened when encryption
is involved. Furthermore, these schemes are fundamentally lim-
ited by the requirement that each participant possess sufficient
local computational resources (GPU compute power and memory)
to train the entire model on its own. This requirement often be-
comes prohibitively demanding, or even infeasible, given the scale
of modern large models [10].

https://doi.org/10.1145/3719027.3765029
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3719027.3765029

CCS 25, October 13-17, 2025, Taipei, Taiwan

2. Secure Dataset Transmission Overheads in Centralised
Collaborative Training with Large Datasets. For centralised
training, the training datasets have to be transmitted to the cen-
tralised server to be used in training. In large scale ML workloads
like LLM, datasets can be massive [15] and the transmission cost
over conventional links is high. When dataset confidentiality is
required, datasets must also be encrypted and sealed when leav-
ing the data holders and transmitted in ciphertext over untrusted
channels. Upon arrival at the destination training server, it must be
authenticated and decrypted before being used for training. Given
the sheer volume of data involved in today’s ML workloads, as
shown in §7, the transmission cost using a regular encrypted chan-
nel like TLS/SSL is prohibitively high and can add a considerable
amount of time and cost to the overall training.

3. Current Confidential GPUs Are Not Optimised for Collab-
orative ML. Confidential GPUs are currently designed for a single
user usage, meaning that they do not trivially work in confiden-
tial collaborative ML in an efficient manner. A confidential GPU
can only be assigned to a single CVM at a time and requires a full
reset whenever it is detached from one CVM and reassigned to
another [40]. While this design offers robust protection in a single
user setting, it has no special optimisation for the need from con-
fidential collaborative ML. Therefore, the collaborative ML has to
be done via conventional methods like FL and centralised training
discussed above even with a confidential GPU. This means that
the scalability remains an issue, and the massive communications
incurred still need to be carried through other slower conventional
channels like TLS/SSL.

To summarise, the key observation is that current generic
confidential collaborative training techniques suffer from
significant overheads due to transmitting a large amount of
data over slower encrypted links. Ideally, when we look at how
the training process works, the model should stay on the GPU and
the data should only be loaded into the GPU via faster links like
PCle. This is the most efficient approach and aligns with what is
typically done in standard, non-collaborative training. Naturally,
we came up with the following research question: If all the problems
come from transmitting large data over slower encrypted links for
collaboration and confidentiality, can we eliminate it while still
allowing the confidential collaboration?

Never underestimate the bandwidth of a station wagon
full of tapes hurtling down the highway [49].
——Andrew S. Tanenbaum

The historical quote by Andrew S. Tanenbaum inspired us that
we can enable the GPU to travel to data holders to collect the data
using high-speed PCle links and then come back for training, in con-
trast to conventional methods of transmitting the datasets/models
between training participants. We further designed the system
to work with the GPU’s confidential computing mechanism. The
datasets’ confidentiality can be protected by performing dataset
clean up and key rotation so that when the GPU travels to a different
data holder, there is no possible leakage on the datasets.

This generic approach can be easily adopted for most training
workloads and can accelerate to the scale up to data-centre level
confidential collaborative ML on its own. It eliminates the need to
transmit large datasets or models over slow network connections,

2654

Shixuan Zhao et al.

significantly improving training efficiency while preserving the
confidentiality of the datasets. It can also be combined with existing
techniques like FL to achieve an even wider distribution.

The primary challenge of this GPU Travelling design is that cur-
rent confidential GPU architectures erase all data and contexts when
being reassigned between CVMs. To address this, we must be able
to ‘hot reassign’ confidential GPU to CVMs on the fly. Even more
challenging, to make this mechanism practical, we must achieve
this without modifying any proprietary part. But GPUs, particularly
NVIDIA GPUs, consist mostly proprietary components with the
exception of the driver [38]. We introduce two key innovations to
achieve this:

e PCIe MUX. We developed a virtual PCIe multiplexer (MUX)
that is capable of hot re-routing the physical PCle connection
to a target CVM so that the GPU does not have to be reset to be
physically reassigned to CVMs.

e Confidential Context Travelling. We heavily modified
NVIDIA H100’s confidential computing logics in the driver so
that the necessary driver contexts to communicate with the GPU
can be exported/imported, allowing a GPU to retain its context
without affecting functionality or compromising security.

Our experimental results demonstrate that GPU Travelling can
significantly reduce data transmission overhead while our security
analysis shows that the confidentiality of the datasets is main-
tained. The proposed approach achieves substantial improvements
in training performance for large-scale Al models compared to ex-
isting confidential computing schemes and can improve the dataset
provision by at least 4.5x to over 1,100x for a 512 MiB dataset
buffer depending on the available bandwidth. Our evaluation on a
real-world application llm.c also showed considerable performance
improvement as shown in §7.

Contributions. We make the following key contributions:

e We introduced GPU Travelling, a novel mechanism designed to
mitigate the substantial communication overheads inherent in
confidential collaborative training scenarios.

e We developed and presented key techniques enabling the secure
travelling of a confidential GPU across GPU-Travelling-aware
CVMs while preserving the confidentiality of the datasets and
security properties.

o We demonstrated the practical feasibility and significant perfor-
mance improvement of GPU Travelling via prototype implemen-
tation and comprehensive empirical evaluation.

2 Background
2.1 Confidential Collaborative ML

Under confidential collaborative machine learning, multiple mu-
tually distrusted data holders want to train a single model out of
their private and confidential datasets. A wide array of scenarios
can benefit from this scheme. For example, an LLM can be trained
with copyrighted materials from different presses that do not wish
to leak the copyrighted materials; A cancer detection model can
be trained from confidential and legally-protected medical records
from different hospitals. While there are many existing works try-
ing to tackle the problem, they primarily fall into two categories:
transferring model or transferring dataset.

GPU Travelling: Efficient Confidential Collaborative Training with TEE-Enabled GPUs

Transferring Model. The most prominent method of model trans-
ferring for confidential collaborative ML is Federated Learning
(FL) [32]. In FL, a centralised node distributes a base model to each
data holder who then trains the model with its private dataset using
its own computing resources locally. After all data holders have
trained the model, the gradients or the model parameters are up-
loaded to the centralised node where these gradients or parameters
are consolidated into one model. The procedure can be repeated
for the desired epochs as needed. There are two problems of FL
that we can conclude from the procedure. One is that the size of
the differences of gradients can be quite large once the model is
large. There are methods to compress the differences for specific
kinds of workloads like [56] but is overall challenging to be applied
to general workloads. The second problem is very difficult to avoid,
which is the requirement that each data holder must have enough
computing resources like GPUs to train on their own datasets. This
in many cases can be impractical [10].

Transferring Dataset. Another way to achieve confidential col-
laborative ML is to transfer the datasets to a trusted centralised
training node. The training node can be protected and attested using
TEE to ensure the confidentiality as in [6, 55] or deprivileged with
multi-party computation and homomorphic encryption as in [9].
To ensure the confidentiality of the datasets, the transmission must
be encrypted to prevent leakage. However, datasets used in mod-
ern training workloads have grown significantly. This means that
transferring the dataset can cause severe performance degradation,
particularly with additional overheads caused by encryption.

2.2 Confidential VMs

VM-based TEEs are a kind of hardware TEEs that protect an entire
VM against privileged attackers like the hypervisor from stealing
or even compromising the VM. Such a protected VM is called as a
Confidential VM (CVM). The mechanism in the hardware encrypts
the memory of the CVM in the MMU [31], ensuring exclusive use
of memory pages [2], protected CPU registers [30], and some other
protection mechanisms like restricted interrupt delivery [2]. Inside
a CVM, an enlightened kernel is provided to handle the TEE fea-
tures of the hardware while leaving the user space fully compatible
with existing workloads and therefore retains great compatibil-
ity [54]. There are currently two dominant VM-based TEEs on the
x86 platform: Intel TDX [8, 26] and AMD SEV [31]. Despite certain
implementation differences, they share great similarities in terms
of protection as well as operation and are both widely supported.
In CVMs, conventional PCle devices including GPUs and network
cards that connect to the CVM are untrusted. Hypervisors can in-
tercept or manipulate the communication if no extra protection
mechanism is implemented in the devices [39, 59].

2.3 NVIDIA Confidential Computing

In CVM'’s threat model, external devices like GPUs are out of the
secure world and are neither trusted nor protected. However, in
modern ML workloads, GPUs are indispensable to achieve practical
performance. To solve this dilemma, NVIDIA proposed NVIDIA
Confidential Computing (CC) to create a GPU TEE that works with
CVMs and debuted it on NVIDIA H100 [39].

2655

CCS 25, October 13-17, 2025, Taipei, Taiwan

Confidential GPU Confidential VM

User Space .
</>
, App
Dataset Model Code Kernel/User Space Driver \L
Firmware P {g;} @
s} Managing Interrupt
{03 pTyv— e Logics Handler
o~ ceessible
ere Managing GPU Accessible
24 Logics
<>
Ay | A o N
O el PCIe/VFIO
Interrupts DMA Engine 1 < LSRR Intertupts
[I

& 1omMmU

& Interrupts

Figure 1: The TEE architecture of NVIDIA H100

In NVIDIA CC, a GPU’s memory is protected against privileged
attackers from accessing from the PCle bus with a firewall mech-
anism [20]. In addition, the communication between a GPU and
a CVM is also encrypted. The architecture of NVIDIA H100’s CC
implementation is illustrated in Figure 1. During the initialisation of
the GPU, a Security Protocols and Data Models (SPDM) [12] session
is created to attest the GPU and to build an asymmetric encrypted
communication path over the unprotected PCle link. This allows
the GPU and the CVM’s driver to negotiate symmetric keys for
further communications. Multiple unprotected bounce buffers are
allocated on the CVM side for different functionalities. When the
GPU or the CVM needs to communicate with each other, the con-
tent will be encrypted using the specific functionality’s symmetric
key and then placed into the designated bounce buffer. The GPU
can use PCle DMA to read/write the bounce buffer with cipher
text [39] and then work in its protected memory on the plain text.
This means that privileged attackers like a hypervisor can no longer
read or modify the communication and the workloads relying on
GPUs can be protected.

3 Overview

As we have discussed in §2.1 that existing confidential collaborative
training techniques requires the transferring of the model or the
dataset. Methods that transfer models like federated learning re-
quires each data holder to have its self-owned computing resources;
Both methods impose significant communication costs on large
model/dataset transmission. As shown in our evaluation in §7, the
transmission cost over TLS/SSL is significant and can take a con-
siderable portion of the entire training process depending on the
bandwidth.

The GPU Travelling mechanism is designed to eliminate the need
of transferring massive amount of data over slower links in confiden-
tial collaborative ML when all data holders can have a direct PCle
link to a single group of confidential GPUs. This, however, requires
a rigorous and non-trivial design to achieve both the performance
improvement while maintaining the confidentiality. In this section,
we discuss the threat model and the design goal of GPU Travelling.

3.1 Assumptions and Threat Model

In our target scenario, we consider a cloud-based training setting
that each data holder operates a CVM that is only accessible to itself

CCS 25, October 13-17, 2025, Taipei, Taiwan

exclusively to securely host and provision their datasets. While
being distributed, data holders need to have direct PCle links to a
single GPU, either locally on the same server or through intra-data-
centre PCle fabrics. They try to train a single model out of their
datasets but want to keep the datasets confidential to each other.

Data holders mutually distrust each other, and the platform
operator, responsible for providing servers and GPU resources,
is also untrusted. We consider two primary types of adversaries,
ensuring dataset confidentiality even in scenarios where adversaries
collude.

e Internal Adversaries: Malicious Data Holders. Malicious
data holders aim to illegitimately access or steal datasets be-
longing to benign data holders. Although isolation mechanisms
enforced by the TEE prevent direct breaches, these adversaries
might exploit our provisioning mechanisms to indirectly infer
or even access confidential datasets.

External Adversaries: Malicious Platform Operator. As the
platform operator controls hardware and hypervisor layers, it is
inherently untrusted. While direct access to the CVM and GPU
TEE is restricted, the platform operator may exploit hypervisor-
level capabilities, such as manipulating PCle connections or
assigning the confidential GPU to incorrect CVMs.

Collusion Attacks. We explicitly consider scenarios where
internal and external adversaries collude, thereby combining
their individual capabilities to launch more sophisticated attacks.

We assume that Denial-of-Service (DoS) attacks, side-channel
attacks and attacks to the hardware to be out the scope of this work.
Note that inferencing dataset information through model difference
(e.g., model inversion) is also considered orthogonal to this research
with existing works mitigating the issue [13, 33, 50, 52].

3.2 Design Goals

To solve the problem of high communication costs involved in
confidential collaborative training, our proposed mechanism must
be able to achieve the following goals:

¢ G1: Eliminating Slow Transmission of Large Dataset or
Model. Our mechanism must completely eliminate transmitting
either datasets or the model through slow connections like Eth-
ernet. The only transmission of datasets or the model should be
the GPU loading procedure through the direct PCle link.

G2: No Impact to Training Results. Our mechanism must not
disturb other processes of the training. It must not introduce any
technical impact to the resulting model.

G3: Imposing Low Mechanism Overheads. The overheads
caused by the mechanism itself must be low so that it does not in-
troduce extra burden when compared to a conventional solution
that sends over slower connections like Ethernet.

G4: Preserving Confidentiality of Datasets. When using our
mechanism, the confidentiality of each data holder’s datasets
must be preserved against malicious attackers discussed in §3.1.
G5: No Change in Proprietary Components. While typically
we can obtain an open source GPU driver (e.g., NVIDIA’s
Open GPU Kernel Modules [38]), the rest of the computing
architecture remains proprietary (e.g., firmware, user space
runtime like CUDA). Our mechanism must not require any
changes in these proprietary components.

2656

Shixuan Zhao et al.

Confidential GPU Orchestrator

Code

Dataset Buffer Model

| e

Data Holder 1 Data Holder 2

Data Holder n

Figure 2: System overview of Travelling GPU.

3.3 System Overview

As discussed in §1, we envision the GPU to operate like a truck
that travels to each data holder to collect data and returns for
training. We call this concept GPU Travelling. While the idea can
be described in a few words, the design is non-trivial in order to
satisfy our goals discussed in §3.2.

The system overview of GPU Travelling is illustrated in Figure 2.
As discussed in §3.1, we consider that each data holder (§4.2) oper-
ates a corresponding CVM that is only accessible by the data holder
itself exclusively so datasets can be securely provisioned into. These
data holders can inspect, verify and agree on an autonomous CVM
we called as the orchestrator (§4.2), which conducts the entire train-
ing procedure on its own and denies any access from any data holder
once set up (§4.1). Both the orchestrator and data holder CVMs have
a direct PCle link to a single GPU where the PCle link can either
stay locally on the same server or be connected via an external
PCle fabric that can allow a distribution up to a data-centre level.

The workflow mostly remains the same as conventional
single-node training on the orchestrator except for the dataset
loading. In conventional single-node training, the dataset is located
on the training node and is directly copied into the GPU. In our
system, instead, we perform a secure switching of the GPU to the
corresponding data holder. Since we use a confidential GPU, there
are 2 layers of switching needed as illustrated in Figure 1. We first
need to do a ‘hard’ switch on the physical layer by re-routing the
GPU’s PCle link to the data holder’s CVM (§4.3) and then do a ‘soft’
switch on the security layer that provisions the driver contexts
including the communication keys to the data holder’s CVM (§4.4).
Note that the GPU remains in confidential mode and will only
respond to those who have valid keys. The data holder CVM can
then access the GPU and copy its datasets into it. After datasets are
copied, the data holder’s CVM will similarly perform the switches
on the two layers back to the orchestrator to continue the training
procedure. A detailed step-by-step workflow is presented in §4.6
after presenting the components in GPU Travelling.

GPU Travelling: Efficient Confidential Collaborative Training with TEE-Enabled GPUs

By doing so, we satisfy G1 that neither the datasets nor the model
needs to be transmitted via slower connections as the datasets are
provisioned directly into the GPU and the model is held on the
GPU. 1t also satisfies G2 since the only difference when comparing
to a conventional single-node training is how the same piece of
dataset is provisioned into the GPU. To achieve G3, the design and
the engineering of the mechanism must minimise the overheads
and provide a significant performance improvement over the con-
ventional way, which will be discussed in details in §4.3 and §4.4.
Since there are multiple mutually distrusted data holders that may
get access to the GPU, careful designs must be made in the security
layer to achieve G4 which will be discussed in §4.4. The most chal-
lenging part comes from G5 that we must make our mechanism
generic and practical enough so that it does not require changes in
the proprietary components. These challenges will be brought up
in §4 but will be further discussed in details in §5.

4 Design

4.1 Bootstrapping

The bootstrapping procedure of GPU Travelling imposes require-
ments on the order of CVM booting and the GPU context each
CVM needs to hold before booting the next one.

Boot Order. As each CVM boots, the contexts on the GPU created
by the previous CVM is wiped and only the last-booted CVM has
the full control and context for the GPU. Therefore, while the order
of how data holder CVMs boot can be arbitrary, the orchestrator
CVM must be booted as the last one.

Context Setup on Data Holders. For each data holder’s CVM, it
must perform a GPU setup to initialise the driver on its end before
booting the next CVM. The context will become invalid after the
next CVM boots but can be restored later as to be discussed in §4.4.
This includes the interrupt handlers, PCle BAR mappings, DMA
mappings for necessary infrastructures like the bounce buffer and
other necessary driver and user space contexts. The data holder
should be set up to a point where it is ready to copy the datasets
right after taking the GPU.

4.2 CVM Roles

In our design, there are two types of CVMs involved: a single
orchestrator and multiple data holders. We describe them in details.

Orchestrator. The orchestrator is a trusted, autonomous CVM
that runs on its own. It hosts the training code and logics in it, and
conducts the training process. It can be adapted from a conventional
training node by changing the routines for dataset loading. Note
that because we use a confidential GPU, the GPU itself must also be
attested and then be set up with the confidential computing context
(e.g., communication keys).

Before loading any dataset, the orchestrator first needs to allocate
a dataset buffer in the GPU’s VRAM for the data holder to load the
dataset. It can then perform a switching to the data holder then
supply the dataset buffer’s address and size to request a loading.
When the data holder has loaded the dataset into the GPU and
switched the GPU back to the orchestrator, the orchestrator can
perform the training just like the conventional way. Note that
the request to the data holder must be encrypted and additional

2657

CCS 25, October 13-17, 2025, Taipei, Taiwan

cleaning must be done to ensure the security, which will be further
discussed in §4.4.

The orchestrator itself does not contain any data and therefore
can be inspected and verified by every data holder before the de-
ployment to ensure that no malicious logic is present. It is the only
globally trusted software component in the system other than the
firmware of the hardware. Note that the training application in
the orchestrator CVM can be written using proprietary SDKs like
CUDA. It has full GPU contexts for both the driver and the user
space.

Data Holder. Each data holder operates a CVM, in which they can
securely hold their datasets. These data holder CVMs are able to
physically connect to the GPU via PCle link. Data holder CVMs are
mutually distrusted and each of them will only build a secure and
encrypted connection with the orchestrator after attesting the iden-
tity and integrity of the orchestrator CVM that is globally trusted
by every data holder. Since the orchestrator CVM is inspected to
make sure it will attest the GPU, a data holder CVM can also trust
the GPU that is switched to it from the orchestrator. This guaran-
tees that for each dataset loading request comes from the trusted
orchestrator and the dataset is only loaded to a trusted confidential
GPU.

The workflow on the data holder side is essentially a server.
Once the GPU is switched to the data holder CVM with the dataset
buffer’s address and size supplied, it copies a portion of the dataset
that fits into the buffer’s size into the GPU and returns the GPU to
the orchestrator.

For data holders, if the orchestrator’s training application is
written with proprietary SDKs like CUDA, to satisfy our design
goal G5, the data holder server can no longer retain GPU context
in the user space. However, we can provide an API in the driver to
copy the dataset into the GPU so the server only has to call that
API to achieve the copying.

4.3 PCle MUX: The Physical Layer

One of the key technical challenge of the GPU Travelling is
to pass through a single GPU on the physical PCle layer into
different CVMs on the fly. A PCle link consists interrupts and DMA
mappings and is considered as an untrusted link in the confidential
GPU as illustrated in Figure 1. We propose a component called a
PCIe MUX in the untrusted hypervisor to achieve this because it
functions like a multiplexer (MUX).

Interrupts. Traditionally, a PCle device uses a single line interrupt,
which is still the default behaviour of the device after a reset. How-
ever, modern PCle devices like NVIDIA’s H100 support Message
Signaled Interrupts (MSI) and MSI-X that is faster and supports
more interrupts. After the driver is loaded and the GPU is set up,
MSI-X will be enabled. Therefore, our mechanism must support
the switching of these standards. We register each CVM’s inter-
rupt routing endpoints. When switching the interrupts to a specific
CVM, we connect the GPU’s interrupt lines with the corresponding
endpoints so the interrupts will then be routed to that CVM.

DMA Mappings. To build the address space used by the GPU,
IOMMU is used to hold the mapping from the physical memory
to guest physical address as the IO Virtual Address (IOVA), which

CCS 25, October 13-17, 2025, Taipei, Taiwan

the GPU uses to access the corresponding memory locations. The
mapping includes unencrypted DMA zones of the CVM as well as
the MMIO zone of the GPU itself.

To achieve the switching, we register each CVM’s mappings
just like the interrupts. When switching, we remove the previous
CVM’s mappings and replay the saved mappings of the target CVM.

By switching the interrupts and the DMA mappings, the con-
fidential GPU’s physical link can be switched between multiple
CVMs. Note that the PCle MUX described above is a software com-
ponent in the host kernel. One may combine it with an external
PCle switch/fabric to achieve switching the GPU to other physically
distributed servers. Interestingly, from the perspective of the GPU,
it has no knowledge that it is being switched. However, without
the keys and the contexts, even if the GPU is physically connected
to a CVM, the CVM cannot communicate with the GPU.

4.4 Confidential Context Travelling: The
Security Layer

After the GPU is physically switched to a CVM, the CVM must
also obtain the keys and other context information from the
previous CVM to communicate with the GPU. This requires a
rigorously designed setup and switching mechanism to ensure
both functionality and security.

Context Setup. GPU drivers (e.g., NVIDIA’s driver) in each CVM
communicates with the GPU using buffers and door bell signals on
the lowest level. On confidential GPUs, signals are done using PCle
register writes and interrupts while there is an extra layer called
bounce buffers for staging ciphertexts in the CVM’s DMA zone that
are negotiated at the setup. We have already made sure the same
MMIO for PCle registers and interrupts used for the signals are
connected as expected in the PCle MUX. However, as we must not
make changes in proprietary components, we cannot require the
GPU firmware to have the ability to change the address of these pre-
defined bounce buffers each time we switch. Therefore, the bounce
buffer addresses must remain the same across different CVMs.

To do this, we require each CVM to reserve a small amount of
RAM that is enough to fit in the buffers at a static physical address.
Then, for each of the CVM, we can ensure that the bounce buffers
are always allocated at the same address by modifying the memory
allocator on the driver side so the GPU can communicate through
the correct bounce buffers in any CVM.

Context Switching and Key Migration. When switching to an-
other CVM, the necessary driver contexts must also be provisioned
into the target CVM including message queue status, semaphore
status, etc. Without these, the context in the target CVM’s driver
will be out of sync with the GPU’s and the communication between
the two may crash.

The most important part of the switching, which actually
empowers the target CVM to talk with the GPU, is the key
migration. Confidential GPUs like NVIDIA H100 uses AES-GCM
and requires not only the key but also an Initial Vector (IV) to
function as a nonce. This prevents replay attacks and also allows
to tell the timing for a key rotation. The key-IV pair is assigned
per-channel and therefore we only need to provision the channels
we would use during the communication. Note that after migrating

2658

Shixuan Zhao et al.

the key to the target CVM, the previous CVM can still decrypt
the communication between the target CVM and the GPU as it
has the key and the IV. In case it wants, it can even intercept the
communication and pretend to be the target CVM to talk with the
GPU with proper timing. We must introduce additional steps to
prevent the data leakage in our design.

Security Clean Up. While the switching mechanism we discussed
so far is symmetric between the orchestrator and the data holder,
the trust relationship is not. As we discussed, the orchestrator is
globally trusted but data holders are not. After the orchestrator has
collected all the dataset from a data holder and finished training, it
will move on to the next data holder. From the above discussion, we
know that the previous CVM (here the previous data holder) may
still retain the keys and IVs. If we use the same keys and IVs for the
next data holder, the previous data holder may be able to decrypt
the communication and steal the dataset. To prevent this, each time
when switching to a different data holder, the orchestrator must
scrub up any residual dataset information on the GPU and perform
a key rotation. By doing this, the previous data holder’s data is
removed with no leakage risk and the keys are invalidated so the
previous data holder no longer has the ability to decrypt future
communications.

4.5 Chain of Trust

The chain of trust is built based on the hardware roots of trust
for both the CPU and the GPU in two phases: GPU phase and
CPU phase. When the orchestrator CVM is launched, it will first
perform an attestation to the GPU. The GPU will use its hardware
root of trust to establish the trust which is verifiable from the
GPU’s vendor (e.g., NVIDIA). This ensures that the GPU is genuine
and trusted. The encrypted channel between the GPU and the
orchestrator is also built at this phase. In the next phase, data
holders join the training cohort and connects with the orchestrator.
In our threat model, the orchestrator is fully trusted and its code
can be inspected by the data holders. Therefore, by verifying the
orchestrator’s deployment using CVM attestation on the CPU side,
a data holder can establish trust on both the orchestrator and the
CPU. Since the orchestrator will also attest the GPU, the data holder
can now also trust the GPU. This forms the chain of trust in GPU
Travelling.

In an asynchronous environment, a data holder with a properly
setup can decide to join later or leave at any time. To join, it may
perform its attestation to the orchestrator CVM until it’s willing
to join without a problem. Since the data holders are symmetric,
the cohort can perform the training as long as there is at least one
online data holder without relying on any specific data holder. To
leave, it may just inform the orchestrator its intention to leave and
stop providing data. As long as its driver context is valid, it may
rejoin at any future moment with either previously established
trust or perform a new attestation.

4.6 Workflow

With the discussion above, we present the complete step-by-step
workflow of our GPU Travelling mechanism and illustrate it in
Figure 3. The process starts from @ security clean up so that no
previous dataset buffer will be leaked. The orchestrator training

GPU Travelling:

Efficient Confidential Collaborative Training with TEE-Enabled GPUs

CCS 25, October 13-17, 2025, Taipei, Taiwan

fo o o fo} o o o
5 A © Clean @ Export O Send O Wait © Receive © Import @ Rotate ® Do
g Y Up > Key D) Key for key? Key Key’ Key’ Training
g D __D T
S i 0
5 Driver | Key Valid L : Key Invalid 1 Key Valid £
- i
0 1
© PCle ! © PCle 1
PCIe MUX "| Switch ! Switch .
- 1
1
. 0 Do !
5 Driver | Key Invalid i Key Valid £ Copy = C Key Invalid
= 0 1 | 1
v 5 1o i : m—
£ Data Holder © Wait O Receive © Import O Req. @ Export © Send
] Server for ke: Key Key’ Copy’ Key Key

Figure 3: Workflow of GPU Travelling. Note that a GPU icon means the GPU is on the specific CVM. A green coloured GPU
means the CVM has the key to access the GPU. A grey coloured GPU means the GPU is physically connected to the CVM but

without key.
(N\
Orchestrator @ Data Holder 1 ____,
DI (=A%
5
A5p (prglg.l]')e{:ry) Data Holder Server
NVIDIA = NVIDIA = h
= Driver & P Driver
> Full Context Keys Incomplete Context No Key)
]
Unencrypted Unencrypted
GPU Accessible GPU Accessible
o LK a M
QA 3 IRQ Handler 0L IRQ Handler
4 U |) ~ |
MMIO DMA e e MMIO DMA
; (o —
1
S
£
5| | -
s — a»
= IOMMLU Interrupts Mgr. IRQ Handler
1
Unencrypted
CPU Accessible
= . .
?5 Proprietary GPU Firmware, etc.

Figure 4: The system architecture of Travelling GPU

application @ exports the keys and contexts and then initialise a @
PCle switch to the data holder. It then @ sends the keys and contexts
so that the data holder can import the keys and contexts. After this,
the data holder server, as described in §4.2, needs to request the
driver to @ copy the dataset into the GPU. Once copied, the data
holder then @ exports the keys and contexts back, @ initiates the
PCle switching to the orchestrator and then @ sends the keys and
contexts back to the orchestrator. After @ importing the keys and
contexts, the orchestrator can immediately @ rotate the keys so the

data holder no longer has access to the GPU even with a PCle link.

The orchestrator @ performs the training on the dataset and loops
back to the beginning.

2659

5 Implementation

To demonstrate the feasibility of the Travelling GPU mechanism,
we implemented a working system with an NVIDIA H100 on an
Intel TDX platform. The code is based on the open source version of
NVIDIA’s driver version 560.35.03 for the driver, and Linux 6.12.0-
rcl with TDX patch 2024-11-08-build-442 on the host side for the
PCle MUX. Our modifications on the code consist of 4,746 LoC
and have been made available along with tools and libraries for
reproduction at https://zenodo.org/records/16899384. The system
architecture with detailed block diagrams is illustrated in Figure 4.

5.1 VFIO-Based PCle MUX

We implemented our PCle MUX with a modified Virtual Function
I/O (VFIO) driver in the host-side Linux kernel. Conventionally,
VFIO would assign a single device to be bound with only a single
VM and would prevent the device from being assigned to another
VM until the previous VM releases the device. We modified the
driver so that it will allow assigning to multiple VMs by saving
and overwriting the previous VM’s configurations each time when
being assigned to a new VM. As discussed in §4.3, we need to
handle both the interrupts and the DMA mappings. We discuss
the implementation details here.

Interrupts. The interrupt handling in VFIO of a VM consists of two
endpoints for conventional interrupts: the hypervisor side IRQ han-
dler and the eventfd of the QEMU passed into the VM. An interrupt
is first setup with an IRQ handler on the hypervisor side, which will
signal the eventfd created by the CVM’s QEMU’s interrupt subsys-
tem. The QEMU will do VFS polling on the eventfd and once the
eventfdis signalled, it will inject the interrupt to the VM with KVM.
In modern standards like MSI-X that is switched to by H100 once the
GPU driver is loaded, the interrupt can also go through a mechanism
called KVM bypass, in which the hardware will inject the interrupt
directly into the VM without the need of the VFS polling process.
To perform the switching, we keep the hypervisor side IRQ
handler unchanged throughout the lifecycle but replace the
eventfd and the bypass end points. This means that whenever a VM
joins/updates the interrupt, we only change/save the eventfd and
bypass information and swap them up when switching. The VM
side end points are like sockets on the VMs while our connection

https://zenodo.org/records/16899384

CCS 25, October 13-17, 2025, Taipei, Taiwan

is like plugging a connector into the corresponding VM with the
other end connecting to the host’s IRQ allocation.

DMA Mappings. The DMA mappings are per-VM-specific and
is done using IOMMU so that the GPU can and can only access
these mapped DMA memory as needed. As discussed in §4.3, the
GPU accesses through IOVAs that are essentially the guest VM’s
physical addresses. Therefore, each IOMMU mapping entry maps a
guest physical address to a host physical address.

Just like the interrupt, we save the DMA mapping information
whenever a VM joins/updates its DMA mapping. When switching,
we first remove the previous VM’s mappings (but keep the saved
mappings) and replay the saved mappings of the target VM. This,
however, differs from the interrupt as each set of DMA mappings is
specific for each VM so it works like each VM has a connector that
can be plugged into a single IOMMU socket as shown in Figure 4.

The GPU’s BAR mappings are special DMA mappings that,
instead of corresponding to physical RAM in the system, maps
to the MMIO region of the GPU. They remains the same across
different VMs and therefore we keep them when switching to
improve the performance.

5.2 Key Migration

In NVIDIA H100’s confidential computing, communication with the
GPU including copying between the GPU and CPU is done through
encrypted channels that are bound to a mechanism called Copy
Engines (CEs). While all CEs are functionality wise the same, during
the setup, each CE will be designated to back a single channel pool
for a specific purpose. Each channel pool can have multiple chan-
nels in it. Although channels on the same CE uses the same set of
keys, each channel maintains its own IVs used by AES encryption.
To allow a CVM to talk with the GPU, we must have valid keys
as well as other cryptographic contexts like the IVs. Note that
NVIDIA’s driver contains multiple components besides the basic
GPU driver. In particular, data copying between the GPU and the
CPU on computation is done through the NVIDIA Unified Virtual
Memory (UVM) kernel module (nvidia-uvm. ko). We modified both
the basic GPU driver and the UVM driver to enable exporting and
importing two pieces of the keys and contexts from both drivers.
We also provide a user space library with APIs to do this at once
and pack them into a single piece of data for easier operations.

5.3 Driver Contexts Migration

Besides the cryptographic keys we need to migrate, we also need
to migrate the necessary driver contexts used during the CPU-GPU
copying. There are multiple contexts on different layers and we
discuss the context we need to migrate of each layer by describing
the CPU-GPU copying workflow.

e CPU-GPU Channel. The CPU-GPU copying starts with the
request being packed into a ‘push’ data for the CPU to GPU
channel. There is a semaphore linked to the channel to indicate
the progress called a tracking semaphore. In this step, we need to
know the dataset buffer’s address on the GPU that is packed into
the request as well as synchronizing the tracking semaphore.

e Work Launch Channel (WLC). In NVIDIA confidential com-
puting, there is no way to do direct push on a regular CE channel
due to restriction imposed. To solve this problem, NVIDIA H100

2660

Shixuan Zhao et al.

uses a special type of channel called a Work Launch Channel
(WLC) [20] to indirectly submit the push of other channels. For
each WLC channel, it has a fixed-size preallocated buffer for its
own push. The GPU knows this buffer’s address during the setup.
The CPU-GPU push is encrypted into a pre-allocated push buffer
and then the push buffer’s address is added into a WLC push. An
ID generated by the GPU indicating which WLC is being used
called a Work Submission Token is also included in the push.
The WLC push is written into a ring buffer on the GPU’s MMIO
zone called a GPFIFO (presumably the name comes from General
Purpose First-In-First-Out) with each GPFIFO entry being 64-bit
for a fixed schedule. The ring buffer’s usage is recorded in a
put-get fashion with two offsets corresponding to put and get.
Once GPFIFO entry is written, the Work Submission Token is
written into the GPU’s doorbell location and the GPU would
be able to know which WLC submitted the push and read the
corresponding GPFIFO entry, decrypt and do the WLC push
in a FIFO order. It will read the WLC push and the decrypt the
push buffer containing the CPU-GPU push to do the actual push
payload. Each WLC also has its own tracking semaphore to
indicate the progress of the push. While this process is relatively
complex, most contexts involved do not need to be migrated at
this step as the addresses are either provisioned each time or
statically allocated. Only the Work Submission Token, GPFIFO
entry’s offset and the tracking semaphore need to be synced.
Launch Confirmation Indicator Channel (LCIC). Once
the WLC push is submitted and done, the GPFIFO’s put offset
must be updated. This is done by a specialised channel called
LCIC [20]. For each WLC, there is a paired LCIC that is
responsible for updating GPFIFO’s put offset of the WLC. LCIC
has an encrypted static buffer to receive the new put value from
the GPU and also has a tracking semaphore for the progress but
would not check until the next WLC push. However, as there
can be multiple pushes during the dataset copying, we must still
sync the tracking semaphore.

GSP RPC. The communication with the GPU System Processor
(GSP) is required to perform certain allocation and management
tasks during the copying. This is done via a Remote Procedure
Call (RPC) [20] mechanism with a message queue as the
underlying infrastructure. The RPC has a static bounce buffer
that is also known on the GPU side. RPC commands and data are
encrypted into that buffer and then sent through the message
queue. The message queue maintains a pair of Tx/Rx sequence
numbers. We have to sync the sequence numbers so to allow
the GSP RPC to work.

5.4 Statically Allocated Bounce Buffer

From above, we can see that there are many statically allocated
bounce buffers that are determined during the setup so the GPU
does not have to query each time for the addresses of them. While
this simplifies the GPU’s firmware implementation, it actually im-
poses challenges on our implementation. As discussed in §4.3, the
IOMMU actually maps the guest physical address to the GPU. There-
fore, when GPU accesses the VM’s memory, it is actually accessing
through physical addresses. We therefore have to guarantee that it
allocates the same physical address each time for these buffers.

GPU Travelling: Efficient Confidential Collaborative Training with TEE-Enabled GPUs

To achieve this, we first reserved a small amount of physical
RAM for these buffers at boot time. Then, we implemented a special
allocation facility for this reserved area of RAM. The RAM is divided
into slots with each slot corresponding to a dedicated buffer. When
allocating a specific buffer, the slot number is given so that it will
always be at the same physical address.

Note that the GPU has its own MMU with its own virtual address
space. When a GPU virtual address is used, it can be safely synced
to other CVMs without needing to adjust the mapping as the GPU’s
access through the PCle will be using the physical address that
remains the same throughout the execution.

5.5 Data Holder Driver API For Copying

As discussed in §4.2, when proprietary GPU SDKs like CUDA are
used, the user space GPU contexts cannot be migrated and the data
holder server needs to use the driver to copy the dataset into the
GPU. This is also achieved by modifying the NVIDIA UVM driver
to add new APIs that perform the copying. In the UVM driver, there
are already GPU memory copying routines that are used internally
in the driver. We wrapped up the routines into ioctl calls so that
the data holder server can use them through a pre-opened UVM
ioctl character file by offering the dataset buffer’s address.

6 Security Analysis

In this section, we discuss the security of the system under our
threat model §3.1 to see how we are able to achieve the protection
of the confidentiality of the datasets.

6.1 Malicious Data Holder

A critical threat in our design is a malicious data holder since it will
have the chance to access the GPU and retain the keys afterwards
when it is being asked to copy its dataset into the GPU. On its own,
a malicious data holder only has access to the GPU when the GPU
is switched to it. In this case, it has access and control to the entire
GPU. We consider two types of attacks it might perform: Dumping
the GPU memory and planting gadgets in the GPU.

Dumping the GPU Memory. As described in §4.4, a clean up to the
previous data holder’s dataset buffer is done before the GPU travels
to the new data holder’s CVM. Therefore, for the new data holder,
all it can read from the GPU is the model. While certain global
properties of the dataset used in training may be inferred from the
difference of the model between two epochs (i.e., model inversion),
this kind of attack is considered as orthogonal to this research with
existing literatures describing mitigations on this [13, 33, 50, 52].
Furthermore, we argue that if there are multiple data holders, the
ability to distinguish a single data holder’s dataset’s property is
low.

Planting Gadgets in the GPU. A malicious data holder may also
try to change the contents inside the GPU to leave potential gadgets.
However, since every piece of the code (kernel in CUDA term) is
loaded freshly each time, it is not possible to cause code to misbe-
have. A malicious data holder can also modify the model so that
it can reflect the dataset more clearly. But as discussed above, it is
orthogonal to this research.

2661

CCS 25, October 13-17, 2025, Taipei, Taiwan

6.2 Malicious Hypervisor

A malicious hypervisor in our system is completely out of the TCB.
It is guarded against the CVM and confidential GPU but is in control
of the PCle MUX. This means that it has the ability to switch the
GPU to any CVM it wants or even CVMs belonging to any data
holder or the orchestrator. It may even split the DMA mapping and
interrupts to different VMs.

However, as the PCle MUX works on the physical link layer,
even if the interrupts and the DMA mappings are swapped to a
wrong VM, that VM will not have the keys for the communications
and therefore cannot read/write to the GPU. If the interrupts and
DMA mappings are split into different CVMs, it will only cause
page faults or unexpected interrupts to the CVMs and then crash
the GPU instead of leaking any dataset information, which is
considered as a DoS attack that is out of the scope of this research.

6.3 Collusion

A more powerful attacker can be formed from the collusion of
a malicious data holder and a malicious host. In this case, the
malicious data holder temporarily has the access to the GPU and
may retain the keys while the hypervisor has the ability to switch
the GPU to any CVM. The threat must be contained even under
this circumstance.

In our system, before the GPU travels to a CVM, the orchestrator
clears the dataset buffer that contains the previous data holder’s
dataset. This means that when a malicious data holder gets the
GPU, all it can do is to retain the key and then collude with the
hypervisor after the GPU travels back to the orchestrator. To steal
other data holder’s dataset, the malicious data holder must at least
wait for the GPU to travel to another victim data holder and then
intercept the communication. There are two ways to intercept the
communication and we discuss below on how they are prevented.

GPU Control with a Malicious Switch. This can be done by
colluding with the hypervisor to force a GPU to switch to the
malicious data holder. If the GPU is switched to the malicious data
holder who has valid keys then the malicious data holder can control
the GPU and directly read the dataset buffer at will. However, as the
orchestrator rotates the key before the GPU travels to the victim
data holder, the keys retained by the malicious data holder are no
longer valid and cannot be used to communicate with the GPU any
more.

A malicious data holder may also try to stop the GPU from
rotating the key by asking the hypervisor to drop the key rotation
command sent to the GPU. However, the commands are encrypted
and even if the hypervisor was able to identify the command and
drop it, since the command’s completion result would never return
to the orchestrator, the orchestrator will be stuck waiting and will
not proceed.

Intercepting the Bounce Buffer. Since the bounce buffer trans-
mitting the ciphertexts is located in the unencrypted DMA zone
of the CVM, the hypervisor may read the content of the ciphertext
and request a decryption from the malicious data holder. However,
this can be similarly prevented due to the key rotation.

CCS 25, October 13-17, 2025, Taipei, Taiwan

512] [| S5 (S nCn
256 I E::::rl.l.l.l.l
@‘128
=3
g 64
2
5 32
g
A 16 R
8 R e
4
0 100 200 300 400 500 600 700 800 900 1000
Time (ms)
BO-Clean Up W O-Export Key BDH-PCle Switching @DH-Import Key

O DH-Read Dataset
BO0-PCle Switching

o DH-GPU Write
BO-Import Key

@DH-Export Key @SSL Overheads

Figure 5: Breakdown of the GPU Travelling mechanism over-
heads. Steps with thick blue borders are those introduced by
the GPU Travelling mechanism.

7 Evaluation

In this section, we present our evaluation of the system to
demonstrate the improvement of the overheads of confidential
collaborative training using the GPU Travelling mechanism. We
designed our evaluation experiments to systematically quantify
the our system overheads on a microscopic level (§7.1), and to
benchmark our performance improvement with comparisons to
conventional dataset provisioning with synthetic loads (§7.2). To
showcase real-world feasibility, usages and performance benefits,
we also present our evaluation based on a popular open-source
LLM training code base llm.c (§7.3). We will provide the evaluation
tools along with the artefacts for reproduction.

All experiments are conducted on a system with dual Intel Xeon
Silver 4516Y+ 2.2GHz 24-Core CPUs with Intel TDX enabled, 256
GiB of RAM and a NVIDIA H100 GPU. Both the CVMs and the
hypervisor runs Ubuntu 24.0.1 LTS. CVMs are protected under Intel
TDX with a stock Linux Kernel 6.8.12 with a patch fixing address
resolving and are configured with 4 CPU cores, 8 GiB of RAM and
a QEMU virtio-net-pci network card. This network card, when
uncapped on bandwidth, reflects the maximum possible network
speed the system can provide without assigning a physical NIC to
the CVM. We chose OpenSSL over Ethernet as the conventional
communication channel.

7.1 GPU Travelling Overheads

To demonstrate the overheads imposed by the GPU Travelling
mechanism, we present a breakdown of the overheads of each step.
We use a synthetic workload that performs data loading from a
data holder for various sizes of pre-allocated GPU data buffer. Each
time a request is sent, the data holder will fill up the buffer with
its dataset. For combination of size and bandwidth, we performed
the experiment for 10 times and averaged the time spent for each

2662

Shixuan Zhao et al.

transmission. The results are presented in Table 1 with a visualised
figure in Figure 5.

From the results, we can observe that there were 5 major compo-
nents that were accounted for most of the overheads: PCIe switch-
ing to the data holder, dataset reading, GPU writing, SSL communi-
cation and the PCle switching back to the orchestrator. Since the
dataset reading and GPU writing steps are also present in the regu-
lar single-node training version, they are considered as an integral
part of the training instead of being part of the overheads by the
GPU Travelling mechanism. For our GPU Travelling mechanism,
the major overheads came from the PCle MUX switching, which
takes approximately 150 ms one way. We can also see that the SSL
communication also takes a small fraction of the overheads. The
shown results are for an uncapped network reflecting the maximum
speed the system can provide and are around 40 ms. We also tested
4 other configurations of bandwidths (4 Mbps, 20 Mbps, 100 Mbps
and 500 Mbps) and found out that even for the smallest configu-
ration at 4 Mbps, the overheads were at most 60 ms and therefore
would not be significant in the result. This is likely because the
keys and contexts were small (about 16 KiB) so the impact from the
latency was more significant than the bandwidth.

We see that the overheads of the GPU Travelling mechanism stay
almost the same regardless of the size of the dataset buffer and are
small enough to be on the same level as the fast PCIe copy. This also
provides an insight that the larger the dataset buffer transferred
each time, the greater the benefit that GPU Travelling can provide.

7.2 Synthetic Benchmarks

We compared our design with a baseline implementation that
transfers all the datasets to the central training node using the same
encrypted SSL connection. This represents existing solutions like
[6, 55]. To offer insights on how our system can improve on the data
transferring, we compared with various configurations of buffer
sizes for transmission and bandwidths. The 10-times average of
time spent in each transmission are presented in Figure 6. The speed
ups (how many times GPU Travelling is faster) are also presented.

From the figure, we can see that for each buffer size, GPU Trav-
elling’s overheads remained almost the same because the SSL trans-
mission of our system sends a fixed size context and takes a very
small portion of the overheads as discussed in §7.1. On contrast,
because the entire datasets needs to be sent over the slow SSL con-
nection, the baseline implementation fluctuates linearly along the
bandwidth. This means that a smaller bandwidth will have a signif-
icant impact on the baseline one but with only minimal impact on
GPU Travelling.

We can also observe that tie-break point between GPU Travelling
and the baseline one was around a 4 MiB buffer with over 500 Mbps
of bandwidth. If the buffer is larger or the bandwidth is slower,
GPU Travelling will be faster than the baseline one. While GPU
Travelling imposes a small static overhead, when the bandwidth is
very high but the buffer is tiny, there is a chance that SSL speed may
overcome that static overhead and overturn the result. However,
in practice, as data centre GPUs generally has VRAM counted in
GiB level (e.g., H100 has 80 GiB of VRAM), it is not practical to
allocate such a small data buffer if GPU Travelling is used nor such

GPU Travelling: Efficient Confidential Collaborative Training with TEE-Enabled GPUs CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 1: Breakdown of the GPU Travelling mechanism. The ‘O-’ and ‘DH-’ prefixes mean the step happens in the Orchestrator
and the Data Holder respectively. A darker background reflects a heavier overhead.

Buffer Overhead (ms) Total
Size O-Clean | O-Export | DH-PCle | DH-Import | DH-Read | DH-GPU | DH-Export | SSL O-PCle O-Import | Time
(MiB) | Up Key Switching | Key Dataset Write Key Overheads | Switching | Key (ms)
4 0.160 0.232 148.029 0.340 2.256 2.976 0.114 32.809 146.647 0.270 | 333.673
8 0.163 0.229 147.011 0.335 4.369 5.804 0.117 33.321 147.198 0.259 | 338.642
16 0.198 0.220 146.393 0.338 9.563 12.176 0.116 32.778 146.532 0.242 | 348.360
32 0.191 0.197 147.867 0.349 19.195 24.336 0.131 48.525 146.794 0.277 | 387.671
64 0.190 0.165 146.698 0.337 38.464 47.557 0.118 32.466 146.131 0.269 | 412.204
128 0.224 0.206 145.773 0.371 76.353 92.261 0.122 35.466 146.757 0.279 | 497.589
256 0.274 0.427 143.073 0.345 147.382 178.816 0.137 35.686 146.134 0.282 | 652.282
512 0.533 0.206 147.968 0.322 288.922 349.278 0.131 44.112 147.727 0.303 | 978.969
20000 80000 300000 — 1200000 —
18000 | 17:446 om0 | O250 279,153 T.115,958 F—
16000 250000 1000000 a0urs
7 60000
E ::ggg 0000 200000 800000
g 10000 40000 150000 600000
= 2333 30000 100000 —— 400000 .
4000 oz 20000 s 50000 ' 200000 o
99 3.836 8 8 59,63
zoog 390 ﬂxus ’m‘m& 273339 202339 ‘0002 423 ﬂux ’_1414 1038368 561 388 . 542 ﬂsw 1’4'_"‘451(, 3992498 1,697498 \ 1,012 ’_‘ng"'i‘{.m 15,560979 4,435 980
4M 20M 100M 500M Uncapped 4M 20M 100M 500M Uncapped am 20M 100M 500M Uncapped am 20M 100M 500M Uncapped
SpeedUp 44.71% 9.42x 2.62< 081x 0.59x 165.26% 3439x 927x 2.68x 145x 51522x 106.84x 28.14x 8.02x 34Ix 1103.15% 222.88x 58.42x 1589 453x
4 MiB 32 MiB 128 MiB 512 MiB

Figure 6: Comparison on synthetic data transmission of different buffer sizes and different bandwidths.

Table 2: The time spent in training and transmission in llm.c.

Performance Benefits. We compared the performance of GPU
Travelling using a 512 MiB buffer with different bandwidths. The

Baseline Ours results are presented in Table 2. We are particularly interested in
Training | Tx | Tx Training | Tx | Tx two criteria: Absolute time and relative percentage.
(s) (s) Percentage (s) (s) | Percentage . . .

M| 123000 | 1115.88 T568% | 123026 | 1.01 0.082% From the table we can tell that for a single 512 MiB transmission,
20M | 123139 | 230.84 15.787% | 122939 | 1.03 0.084% we can save at least 6.36 seconds even for the uncapped network.
100x 123117 | 6036 OGN 123057 | 1.02 D080% This can scale to a considerable amount of time when the training

500 1230.73 | 15.86 1.272% | 1229.67 | 0.98 0.080%
Uncapped | 122936 73 oA 125145 | 0.8 0707 dataset is large since each 512 MiB transmission can save 6.36

a high dedicated bandwidth for every data holder. We tested this
configuration merely to push our system to the tie-break point.
The results show a clear performance benefit of our system across
different bandwidths and buffer sizes with significant improvements
particularly for larger buffers and relatively slower bandwidths.

7.3 Application Evaluation with llm.c

To demonstrate real-world feasibility and benefits, we compared our
system with llm.c [3], an open-source CUDA-based LLM training
project using the GPT-2 model. The model itself has been pre-
trained and we are doing the fine-tuning part that uses the same
logic as the training to reflect the training process. In this section,
we discuss the porting effort and the performance benefits to use
GPU Travelling in a real-world large model training scenario.

Porting Effort. In llm.c, just like most training software, the data is
loaded using a data loader subsystem. This is the only place we need
to modify. Instead of loading from local dataset files, we now load
from a data holder remotely using our GPU Travelling mechanism as
well as an SSL version for comparison. Also in llm.c, the data holder
naively loads only one batch of data each time. Instead, we now fill
the data buffer each time. The rest of the code remains the same.

seconds and the training involves way more than one epoch.

For relative speed up, we consider how many percentage of time
was spent on transmission in the entire training. As we can see, the
transmission cost on a baseline implementation reached over 1%
even with a relatively high 500 Mbps bandwidth. It quickly grew
to 4.67% when the bandwidth was a more common 100 Mbps and
kept growing for the two slower bandwidths.

As requiring uncapped bandwidth is typically not the most cost
effective deployment configuration, we believe that most of the
existing collaborative training mechanisms will need to sacrifice
on the transmission overheads in exchange of confidentiality. With
GPU Travelling, the cost can be significantly reduced, both on the
absolute time consumption and the relative overheads.

7.4 Summary of Results

The takeaway of the evaluation results is that GPU Travelling
eliminates the transmission of large dataset via slow connections
and imposes a small and fixed overhead that does not grow along
the transmission size or the bandwidth. When compared with a
baseline implementation, GPU Travelling was significantly faster
in most configurations except for some edge cases. The relationship
between the speed up, dataset buffer size and bandwidth is: A larger
dataset buffer and a slower link contributes to slower transmission

2663

CCS 25, October 13-17, 2025, Taipei, Taiwan

in the baseline implementation, and therefore a more significant
speed-up for GPU Travelling. The llm.c integration shows feasibility
in real world applications with reasonable porting burden. The
performance results showed considerable training time reduction.

Implication of Even Faster Networking. In our evaluation, due
to hardware limitations, the uncapped network reaches around 1
Gbps. In specialised deep learning cloud VM instances, inter-VM
connection can sometimes go up to a higher bandwidth such as
10 Gbps with physical NICs. We here estimate the implication of
a higher bandwidth using our evaluation data. From Figure 6, we
found that SSL cryptographic imposed about 30%-40% of overheads
for bandwidth over 100 Mbps and the overheads are more significant
when the bandwidth is bigger. Therefore, for 10 and 100 Gbps, the
overhead should be more than 40%. We take 40% for estimation so
the effective bandwidth will be 6 Gbps. For a 1 GiB dataset buffer,
10 Gbps link can take 1.3 s to transmit. The GPU copying will cause
approximately 0.7 s and therefore, the total time will be 2 s. For
GPU Travelling, the static overhead is about 300 ms and the total
time will be 1 s. From the estimation, we can still be 2x faster on a
1 GiB buffer and a 10 Gbps link and save 1 second for every 1 GiB
of dataset transmitted.

While our GPU Travelling can still improve the performance
considerably even with a faster networking, do note that these
high-bandwidth NICs are targeting the training nodes (e.g., the
orchestrator in GPU Travelling) for the data exchange in the train-
ing process. For data holder CVMs, since it does not have the duty
to run computations, it is generally not cost-effective to assign

high-bandwidth NICs to them.

8 Related Works

Federated Learning. Federated Learning (FL) [29, 34] is a collab-
orative training mechanism that enables multiple participants to
jointly build a machine learning model while keeping their pri-
vate data local. Instead of sharing raw data, participants exchange
model updates, making FL an attractive solution for mutually dis-
trusted parties or entities handling sensitive information, such as
healthcare or financial institutions, where data privacy is critical.

In practice, Federated Stochastic Gradient Descent (FedSGD) [45]
and Federated Averaging (FedAvg) [34] are the most widely used
aggregation algorithms in FL for training deep neural networks
(DNN5s). These approaches rely on iterative synchronisation and
merging of model updates across training rounds. Recent research
has also explored integrating FL with confidential computing (7,
14, 22, 36, 43] to further strengthen security guarantees.

Despite these advantages, FL faces major performance bottle-
necks, especially when training large-scale models like LLMs. Each
training iteration requires frequent transmission of model updates
or gradients over the network, incurring substantial communi-
cation overhead. This becomes increasingly prohibitive as model
sizes grow. Moreover, when confidential GPUs are used, the need to
seal and unseal large models and training data for transfer into the
GPU'’s protected memory imposes additional computational over-
head [11, 37], further degrading performance. While compression
techniques such as [46, 47, 56] can partially alleviate communica-
tion overhead for specific workloads, their effectiveness remains
limited in the general case. Generic compression methods typically

2664

Shixuan Zhao et al.

achieve compression ratios around 0.5, which still leaves a substan-
tial volume of data to be transmitted and is especially problematic
for large models like LLMs. Achieving significantly higher com-
pression rates without sacrificing training accuracy or applicability
across diverse models and datasets remains a fundamental chal-
lenge. As a result, compression alone is insufficient to address the
communication bottlenecks in large-scale collaborative training.

Our GPU Travelling approach introduces a fundamentally differ-
ent collaborative training mechanism. Instead of repeatedly trans-
mitting model updates or training datasets, we deploy a confidential
GPU as a secure physical entity that travels between data holders
and the orchestrator. The model is loaded once into the GPU’s
protected memory and remains there throughout training. Each
data holder locally feeds their training data directly into the GPU,
avoiding transmission over slower networks and eliminating the
need for repeated sealing/unsealing operations. This significantly
reduces both communication and cryptographic overhead, enabling
scalable and confidential collaborative training for large models and
datasets, such as those used in LLMs. However, GPU Travelling has
a limitation on geographically distributed scenarios as it requires
direct PCle link from CVMs to the GPU. We discuss methods to
scale into data-centre level and, with the combination of techniques
like FL, to achieve geographical distribution in §9.

GPU Disaggregation. In GPU disaggregation [21], GPUs are
decoupled from a single host, grouped into a pool and then
connected to a host (or a VM) on demand using hardware/software
switches. The disaggregation can be implemented on different
layers (e.g., user-space library, driver or PCle level). When a GPU is
assigned to a host or a VM, it typically performs a reset so that the
host or the VM can use the GPU as a clean environment. Without
the reset, the host or the VM does not have the corresponding
driver/library context to communicate with the GPU and the GPU
would not function properly [16, 28].

When compared with GPU disaggregation, GPU Travelling
uses a similar design based on PCle link switching. However, our
design has to solve the non-trivial problem of keeping the existing
contexts and data on the GPU with confidential computing enabled
while maintaining the confidentiality of multiple mutual-distrusted
data holders.

While there are significant differences, GPU disaggregation can
work with our GPU Travelling mechanism to receive benefits from
both worlds. In particular, disaggregation methods based on PCle
links can have their PCle switching mechanism used as the PCle
MUX in GPU Travelling. With data holders CVMs properly setup,
workloads on disaggregated GPUs can also have the assigned GPU
to travel to these data holder CVMs for dataset collection. The
disaggregation also implies that GPUs are no longer restricted
within one physical host. This can enable even more possibilities
to be discussed in §9 when combined with GPU Travelling.

9 Future Works and Outlooks

PCle TDISP Integration. Future revision of PCle (PCle 6.0) has a
feature called TEE Device Interface Security Protocol (TDISP) [42]
that offers encryption on the PCle protocol level instead of using
the bounce buffer. This protocol will allow a unified and encrypted
PCle connection between a CVM and an enlightened device. We

GPU Travelling: Efficient Confidential Collaborative Training with TEE-Enabled GPUs

believe that the same idea of GPU Travelling can also be applied to
this feature. Changes may need to be made on the key migration
part of the context travelling. This time, the PCle key needs to be
exported. However, due to lack of commercially available hardware,
we leave this as a future work.

Workload Scaling. Our GPU Travelling mechanism is designed
to focus on the lower level data transmission layer and therefore
can be combined with many of the existing GPU workload scaling
techniques. For example, in model parallelism [5], each GPU trains
a portion of the model through the entire dataset. This means that
each GPU can travel to every data holder on its own to collect data
and train. Another example like in data parallelism [27], each GPU
trains the entire model on a small portion of the dataset. In this case,
each GPU can travel to only those data holders that has the data it
needs. However, since NVIDIA’s confidential computing currently
does not support passing multiple confidential GPUs into a single
CVM, we leave this as a future work.

Hardware PCle Switching. In our current implementation, the
GPU resides on a single host server and is physically attached to
that server. This limits the GPU’s range of travel to be within that
server. However, hardware PCle switches (e.g., PCle fabrics) are
available [24] and may be employed to connect GPUs to multiple
servers on demand as in the GPU disaggregation discussed above,
we believe that the same hardware PCle switches can also be used
to allow a GPU to travel to data holder CVMs on another physical
server in the data centre.

Distribution Beyond Data-Centre Level. GPU Travelling re-
quires the GPU used to be reachable by PCle links to data holder
CVMs and the orchestrator. With PCle fabrics discussed above, GPU
Travelling can be applied for distribution up to a data-centre-level.
However, when geographical distribution is needed, as a low-level
mechanism, GPU Travelling can also be easily combined with ex-
isting geographically distributed techniques like FL in a two-layer
fashion. For example, data holders in a single data centre can form
a local cohort in which they could employ GPU Travelling. These
geographically-distributed cohorts can then still use FL by inte-
grating the logics into each cohort’s orchestrator. By doing this,
each member of the local cohort no longer needs to send large
model gradients across the network on its own when compared to
vanilla FL techniques. In this way, one can push the collaborative
training beyond data-centre-level while still benefit from our GPU
Travelling technique.

Dataset-as-a-Service. In confidential CVMs, live migration has
been researched and available to allow a CVM to migrate from one
server to another [23, 51]. We envision that a data holder CVM can
be provisioned using the live migration on demand to a specific
training server where the the orchestrator on that server can then
use the datasets in the specific data holder CVM with our GPU
Travelling mechanism. We believe this can enable a new service
scheme as dataset-as-a-service in which datasets can be securely
used for training without the worry of leaking.

Changes in Proprietary Components. We set off the project with
the restriction that no proprietary components may be changed to
achieve GPU Travelling so that a practical system can be offered
straight out of the box with existing hardware and software. We

2665

CCS 25, October 13-17, 2025, Taipei, Taiwan

now discuss new possibilities can be achieved by changing certain
proprietary components.

e Limit GPU Memory Access. This can be done by changing
the GPU’s firmware so that a CE can be limited to access only
certain region of the GPU memory. When this is possible, the
orchestrator can pick a CE for the data holder and limit the CE’s
access to only the dataset buffer. When GPU travels, only the key
of this CE will be provisioned so that the data holder cannot read
or write the model or other memory. This can eliminate certain
side channel attacks like model inferencing.

e CUDA Context Migration. By modifying the CUDA runtime
to export CUDA contexts together with GPU contexts, we
technically can allow the GPU to travel permanently and
completely to a new CVM. This can be achieved either by
migrating the entire context memory with the approach in
VMST [17] or by transferring only the necessary portions. If this
is possible, whenever a CVM is no longer capable of running
the training, we can keep the training on the GPU and travel
to a new CVM for uninterrupted service. For example, a CVM
may need maintenance and this may happen in the middle
of a training; Or, a CVM’s configuration may turn out to be
unsuitable for the specific training workload in the middle of a
training and a new and better-configured CVM might be desired.
Orchestrator Fail-Safe. CUDA context migration can also
benefit the availability in the GPU Travelling directly. In our
design, there is only a single orchestrator and its failure may
halt the entire training process. To achieve fail-safe, we need
redundancy in the orchestrator which requires duplicated
orchestrator nodes. Since the orchestrator CVM requires full
CUDA context, similar to the CUDA context migration, we can
modify the CUDA runtime to export the CUDA context to the
new orchestrator node. There can be periodic training context
sync-ups between these redundant orchestrator nodes so that
if one of them fails, a redundant orchestrator can immediately
take over the training to achieve fail-safe.

10 Conclusion

We have presented GPU Travelling, a novel mechanism that en-
ables efficient confidential collaborative training with TEE-enabled
GPUs by allowing GPUs to securely travel to data holders to collect
dataset, and therefore eliminates the encrypted large dataset/model
transmission over slower connections. Our implementation and
integration with llm.c demonstrated the feasibility to apply GPU
Travelling in a real world setting. The evaluation results showed
that GPU Travelling outperformed conventional methods for com-
mon data buffer sizes and networking bandwidths, and can sig-
nificantly benefit in both relative performance and absolute time
saving for modern collaborative training workloads like LLM.

Acknowledgement

We would like to thank the anonymous reviewers for their feedback
and suggestions. The authors from The Ohio State University were
partially supported by NSF awards 2112471, 2207202, and 2348754.
Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

CCS 25, October 13-17, 2025, Taipei, Taiwan

References

(1]

[9

=

[10]

=
[

=
it

[15]

[16

[17

(18]

[19

™
=

[21]

[22]

[23

[24

Amazon. 2023. Amazon EC2 now supports AMD SEV-SNP. https://
aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/.
AMD. 2020. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection
and More. White paper (2020).

Andrej Karpathy. [n. d.]. karpathy/llm.c: LLM training in simple, raw C/CUDA.
https://github.com/karpathy/llm.c.

Azure. 2023. Preview: Introducing DCesv5 and ECesv5-series Confidential VMs
with Intel TDX. https://azure.microsoft.com/en-us/updates/confidential-vms-
with-intel-tdx-dcesv5-ecesv5/.

Felix Brakel, Uraz Odyurt, and Ana-Lucia Varbanescu. 2024. Model Parallelism on
Distributed Infrastructure: A Literature Review from Theory to LLM Case-Studies.
arXiv:2403.03699 [cs.DC] https://arxiv.org/abs/2403.03699

Dong Chen, Alice Dethise, Istemi Ekin Akkus, Ivica Rimac, Klaus Satzke,
Antti Koskela, Marco Canini, Wei Wang, and Ruichuan Chen. 2024. Pro-
tecting Confidentiality, Privacy and Integrity in Collaborative Learning.
arXiv:2412.08534 [cs.DC] https://arxiv.org/abs/2412.08534

Pau-Chen Cheng, Kevin Eykholt, Zhongshu Gu, Hani Jamjoom, KR Jayaram,
Enriquillo Valdez, and Ashish Verma. 2024. Deta: Minimizing data leaks in
federated learning via decentralized and trustworthy aggregation. In Proceedings
of the nineteenth european conference on computer systems. 219-235.

Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2024. Intel TDX
Demystified: A Top-Down Approach. Comput. Surveys 56, 9 (2024), 1-33.
Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang
Zhang, Somesh Jha, Nicolas Papernot, and Xiao Wang. 2021. CaPC Learning:
Confidential and Private Collaborative Learning. arXiv:2102.05188 [cs.LG]
https://arxiv.org/abs/2102.05188

Katharine Daly, Hubert Eichner, Peter Kairouz, H. Brendan McMahan, Daniel
Ramage, and Zheng Xu. 2025. Federated Learning in Practice: Reflections and
Projections. arXiv:2410.08892 [cs.LG] https://arxiv.org/abs/2410.08892
Gobikrishna Dhanuskodi, Sudeshna Guha, Vidhya Krishnan, Aruna Manjunatha,
Rob Nertney, Michael O’Connor, and Phil Rogers. 2023. Creating the first confi-
dential GPUs. Commun. ACM 67, 1 (2023), 60—67.

DMTF. [n.d.]. SPDM | DMTF. https://www.dmtf.org/standards/spdm.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Proceedings of the Third
Conference on Theory of Cryptography (New York, NY) (TCC’06). Springer-Verlag,
Berlin, Heidelberg, 265-284. https://doi.org/10.1007/11681878_14

Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba, Tiziano San-
toro, Brett McLarnon, Timon Van Overveldt, Nova Fallen, Peter Kairouz, Al-
bert Cheu, et al. 2024. Confidential federated computations. arXiv preprint
arXiv:2404.10764 (2024).

Hugging Face. 2020. OpenAI GPT2. https://huggingface.co/docs/transformers/
model_doc/gpt2.

Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and
Christopher J. Rossbach. 2022. DGSF: Disaggregated GPUs for Serverless Func-
tions. In 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 739-750. https://doi.org/10.1109/IPDPS53621.2022.00077

Yangchun Fu and Zhiqiang Lin. 2012. Space traveling across vm: Automatically
bridging the semantic gap in virtual machine introspection via online kernel data
redirection. In 2012 IEEE symposium on security and privacy. IEEE, 586-600.
Daniel J Gervais, Noam Shemtov, HARALAMBOS MARMANIS, and CATHERINE
ZALLER ROWLAND. 2024. The Heart of the Matter: Copyright, Al Training, and
LLMs. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4963711. (2024).
Google. 2020. Introducing Google Cloud Confidential Computing with Confiden-
tial VMs. https://cloud.google.com/blog/products/identity-security/introducing-
google-cloud- confidential- \ computing- with-confidential- vmns.

Zhongshu Gu, Enriquillo Valdez, Salman Ahmed, Julian James Stephen, Michael
Le, Hani Jamjoom, Shixuan Zhao, and Zhiqiang Lin. 2025. NVIDIA GPU Confi-
dential Computing Demystified. arXiv:2507.02770 [cs.CR] https://arxiv.org/abs/
2507.02770

Anubhav Guleria, J. Lakshmi, and Chakri Padala. 2019. EMF: Disaggregated
GPUs in Datacenters for Efficiency, Modularity and Flexibility. In 2019 IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM). 1-8.
https://doi.org/10.1109/CCEM48484.2019.000-5

Jinnan Guo, Peter Pietzuch, Andrew Paverd, and Kapil Vaswani. 2024. Trustwor-
thy AT using Confidential Federated Learning: Federated learning and confidential
computing are not competing technologies. Queue 22, 2 (2024), 87-107.

Pankaj Gupta and Tom Lendacky. 2023. SEV-SNP Live Migration and VMM/KVM
API Implications. https://Ipc.events/event/17/contributions/1532/attachments/
1369/2974/06%20LPC-SNP- Live- Migration.pdf

Wentao Hou, Jie Zhang, Zeke Wang, and Ming Liu. 2024. Understanding Routable
PCle Performance for Composable Infrastructures. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24). USENIX Associa-
tion, Santa Clara, CA, 297-312. https://www.usenix.org/conference/nsdi24/
presentation/hou

2666

[25

[26

[27

[28

[29

[30

(31

(32]

@
&

[34

(35]

(36]

W@
=

[38

[39

[40

(41

[42

[43]

[44

[45

[46

[47

(48

Shixuan Zhao et al.

IBM. 2025. Confidential computing solutions. https://www.ibm.com/confidential-
computing.
Intel. 2020. Intel Trust Domain Extensions Whitepaper. https:

//software.intel.com/content/dam/develop/external/us/en/documents/tdx-
whitepaper-final9-17.pdf.

Jinda Jia, Cong Xie, Hanlin Lu, Daoce Wang, Hao Feng, Chengming Zhang, Baixi
Sun, Haibin Lin, Zhi Zhang, Xin Liu, and Dingwen Tao. 2024. SDP4Bit: Toward
4-bit Communication Quantization in Sharded Data Parallelism for LLM Training.
arXiv:2410.15526 [cs.LG] https://arxiv.org/abs/2410.15526

Xin Jin, Zhihao Bai, Zhen Zhang, Yibo Zhu, Yinmin Zhong, and Xuanzhe Liu.
2024. DistMind: Efficient Resource Disaggregation for Deep Learning Workloads.
IEEE/ACM Trans. Netw. 32, 3 (Jan. 2024), 2422-2437. https://doi.org/10.1109/
TNET.2024.3355010

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and trends® in machine learning 14, 1-2 (2021), 1-210.

David Kaplan. 2017. Protecting VM register state with SEV-ES. White paper
(2017).

David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.
White paper (2016).

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. 2017. Federated Learning: Strate-
gies for Improving Communication Efficiency. arXiv:1610.05492 [cs.LG]
https://arxiv.org/abs/1610.05492

Hiroki Masuda, Kentaro Kita, Yuki Koizumi, Junji Takemasa, and Toru Hasegawa.
2021. Model Fragmentation, Shuffle and Aggregation to Mitigate Model In-
version in Federated Learning. In 2021 IEEE International Symposium on Lo-
cal and Metropolitan Area Networks (LANMAN). 1-6. https://doi.org/10.1109/
LANMANS52105.2021.9478813

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273-1282.

Timo Minssen, Sara Gerke, Mateo Aboy, Nicholson Price, and Glenn Cohen.
2020. Regulatory responses to medical machine learning. Journal of Law and the
Biosciences 7, 1 (2020), 1saa002.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2022. Ppfl: Enhancing privacy in federated learning with
confidential computing. GetMobile: Mobile Computing and Communications 25, 4
(2022), 35-38.

Apoorve Mohan, Mengmei Ye, Hubertus Franke, Mudhakar Srivatsa, Zhuoran
Liu, and Nelson Mimura Gonzalez. 2024. Securing Al Inference in the Cloud:
Is CPU-GPU Confidential Computing Ready?. In 2024 IEEE 17th International
Conference on Cloud Computing (CLOUD). IEEE, 164-175.

NVIDIA. [n. d.]. NVIDIA/open-gpu-kernel-modules: NVIDIA Linux open GPU
kernel module source. https://github.com/NVIDIA/open-gpu-kernel-modules.
NVIDIA. 2024. Confidential Computing | NVIDIA. https://www.nvidia.com/en-
us/data- center/solutions/confidential-computing/.

NVIDIA. 2024. Confidential Computing Deployment Guide - (Intel TDX & KVM).
https://docs.nvidia.com/cc-deployment- guide-tdx.pdf.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Wellman.
2018. SoK: Security and Privacy in Machine Learning. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). 399-414. https://doi.org/10.1109/
EuroSP.2018.00035

PCI-SIG. [n.d.]. IDE and TDISP: An Overview of PCIe® Technology Security
Features | PCI-SIG. https://pcisig.com/blog/ide-and-tdisp-overview-pcieAs-
technology-security-features.

Do Le Quoc and Christof Fetzer. 2021. Secfl: Confidential federated learning
using tees. arXiv preprint arXiv:2110.00981 (2021).

Wolfram Ravenwolf. 2025. LLM Comparison/Test: DeepSeek-V3, QVQ-72B-
Preview, Falcon3 10B, Llama 3.3 70B, Nemotron 70B in my updated MMLU-Pro
CS benchmark. https://huggingface.co/blog/wolfram/llm-comparison-test-2025-
01-02.

Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security. 1310-1321.

Jiajun Song, Jiajun Luo, Rongwei Lu, Shuzhao Xie, Bin Chen, and Zhi Wang,. 2024.
A Joint Approach to Local Updating and Gradient Compression for Efficient
Asynchronous Federated Learning. arXiv:2407.05125 [cs.DC] https://arxiv.org/
abs/2407.05125

Haijian Sun, Xiang Ma, and Rose Qingyang Hu. 2020. Adaptive Federated Learn-
ing With Gradient Compression in Uplink NOMA. arXiv:2003.01344 [cs.NI]
https://arxiv.org/abs/2003.01344

Shiyu Sun, Shu Wang, Xinda Wang, Yunlong Xing, Elisa Zhang, and Kun Sun. 2023.
Exploring Security Commits in Python . In 2023 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE Computer Society, Los

https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/
https://github.com/karpathy/llm.c
https://azure.microsoft.com/en-us/updates/confidential-vms-with-intel-tdx-dcesv5-ecesv5/
https://azure.microsoft.com/en-us/updates/confidential-vms-with-intel-tdx-dcesv5-ecesv5/
https://arxiv.org/abs/2403.03699
https://arxiv.org/abs/2403.03699
https://arxiv.org/abs/2412.08534
https://arxiv.org/abs/2412.08534
https://arxiv.org/abs/2102.05188
https://arxiv.org/abs/2102.05188
https://arxiv.org/abs/2410.08892
https://arxiv.org/abs/2410.08892
https://www.dmtf.org/standards/spdm
https://doi.org/10.1007/11681878_14
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2
https://doi.org/10.1109/IPDPS53621.2022.00077
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4963711
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-\computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-\computing-with-confidential-vms
https://arxiv.org/abs/2507.02770
https://arxiv.org/abs/2507.02770
https://arxiv.org/abs/2507.02770
https://doi.org/10.1109/CCEM48484.2019.000-5
https://lpc.events/event/17/contributions/1532/attachments/1369/2974/06%20LPC-SNP-Live-Migration.pdf
https://lpc.events/event/17/contributions/1532/attachments/1369/2974/06%20LPC-SNP-Live-Migration.pdf
https://www.usenix.org/conference/nsdi24/presentation/hou
https://www.usenix.org/conference/nsdi24/presentation/hou
https://www.ibm.com/confidential-computing
https://www.ibm.com/confidential-computing
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://arxiv.org/abs/2410.15526
https://arxiv.org/abs/2410.15526
https://doi.org/10.1109/TNET.2024.3355010
https://doi.org/10.1109/TNET.2024.3355010
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.1109/LANMAN52105.2021.9478813
https://doi.org/10.1109/LANMAN52105.2021.9478813
https://github.com/NVIDIA/open-gpu-kernel-modules
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://docs.nvidia.com/cc-deployment-guide-tdx.pdf
https://doi.org/10.1109/EuroSP.2018.00035
https://doi.org/10.1109/EuroSP.2018.00035
https://pcisig.com/blog/ide-and-tdisp-overview-pcie®-technology-security-features
https://pcisig.com/blog/ide-and-tdisp-overview-pcie®-technology-security-features
https://huggingface.co/blog/wolfram/llm-comparison-test-2025-01-02
https://huggingface.co/blog/wolfram/llm-comparison-test-2025-01-02
https://arxiv.org/abs/2407.05125
https://arxiv.org/abs/2407.05125
https://arxiv.org/abs/2407.05125
https://arxiv.org/abs/2003.01344
https://arxiv.org/abs/2003.01344

GPU Travelling: Efficient Confidential Collaborative Training with TEE-Enabled GPUs

Alamitos, CA, USA, 171-181. https://doi.org/10.1109/ICSME58846.2023.00027
Andrew S. Tanenbaum. 1989. Computer Networks. (1989), 57.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui
Zhang, and Yi Zhou. 2019. A Hybrid Approach to Privacy-Preserving Federated
Learning. arXiv:1812.03224 [cs.LG] https://arxiv.org/abs/1812.03224

Wei Wang. 2021. TDX Live Migration. https://lpc.events/event/11/contributions/
960/attachments/839/1586/TDX%20Live%20Migration_Wei%20Wang.pdf

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi,
Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. 2020. Federated Learning With
Differential Privacy: Algorithms and Performance Analysis. IEEE Transactions on
Information Forensics and Security 15 (2020), 3454-3469. https://doi.org/10.1109/
TIFS.2020.2988575

Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue Zhang, Zhaochun Ren, and
Xiuzhen Cheng. 2025. On protecting the data privacy of Large Language Models
(LLMs) and LLM agents: A literature review. High-Confidence Computing (2025),
100300. https://doi.org/10.1016/j.hcc.2025.100300

Chugi Zhang, Rahul Priolkar, Yuancheng Jiang, Yuan Xiao, Mona Vij, Zhenkai
Liang, and Adil Ahmad. 2025. Erebor: A Drop-In Sandbox Solution for Pri-
vate Data Processing in Untrusted Confidential Virtual Machines (EuroSys
’25). Association for Computing Machinery, New York, NY, USA, 1210-1228.
https://doi.org/10.1145/3689031.3717464

CCS 25, October 13-17, 2025, Taipei, Taiwan

[55] Chengliang Zhang, Junzhe Xia, Baichen Yang, Huancheng Puyang, Wei Wang,

Ruichuan Chen, Istemi Ekin Akkus, Paarijaat Aditya, and Feng Yan. 2021. Citadel:
Protecting Data Privacy and Model Confidentiality for Collaborative Learning
with SGX. arXiv:2105.01281 [cs.CR] https://arxiv.org/abs/2105.01281

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and
Zenglin Xu. 2023. FedPETuning: When Federated Learning Meets the Parameter-
Efficient Tuning Methods of Pre-trained Language Models. In Findings of the
Association for Computational Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics,
Toronto, Canada, 9963-9977. https://doi.org/10.18653/v1/2023.findings-acl.632
Shixuan Zhao, Mengyuan Li, Yinqian Zhangyz, and Zhigiang Lin. 2022. vSGX:
Virtualizing SGX Enclaves on AMD SEV. In 2022 IEEE Symposium on Security
and Privacy (SP). 321-336. https://doi.org/10.1109/SP46214.2022.9833694
Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang, and
Zhigiang Lin. 2023. Reusable Enclaves for Confidential Serverless Computing. In
32nd USENIX Security Symposium (USENIX Security 23). USENIX Association, Ana-
heim, CA, 4015-4032. https://www.usenix.org/conference/usenixsecurity23/
presentation/zhao-shixuan

Mingwei Zheng, Chengpeng Wang, Xuwei Liu, Jinyao Guo, Shiwei Feng, and
Xiangyu Zhang. 2025. An LLM Agent for Functional Bug Detection in Network
Protocols. arXiv:2506.00714 [cs.SE] https://arxiv.org/abs/2506.00714

https://doi.org/10.1109/ICSME58846.2023.00027
https://arxiv.org/abs/1812.03224
https://arxiv.org/abs/1812.03224
https://lpc.events/event/11/contributions/960/attachments/839/1586/TDX%20Live%20Migration_Wei%20Wang.pdf
https://lpc.events/event/11/contributions/960/attachments/839/1586/TDX%20Live%20Migration_Wei%20Wang.pdf
https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1016/j.hcc.2025.100300
https://doi.org/10.1145/3689031.3717464
https://arxiv.org/abs/2105.01281
https://arxiv.org/abs/2105.01281
https://doi.org/10.18653/v1/2023.findings-acl.632
https://doi.org/10.1109/SP46214.2022.9833694
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan
https://arxiv.org/abs/2506.00714
https://arxiv.org/abs/2506.00714

	Abstract
	1 Introduction
	2 Background
	2.1 Confidential Collaborative ML
	2.2 Confidential VMs
	2.3 NVIDIA Confidential Computing

	3 Overview
	3.1 Assumptions and Threat Model
	3.2 Design Goals
	3.3 System Overview

	4 Design
	4.1 Bootstrapping
	4.2 CVM Roles
	4.3 PCIe MUX: The Physical Layer
	4.4 Confidential Context Travelling: The Security Layer
	4.5 Chain of Trust
	4.6 Workflow

	5 Implementation
	5.1 VFIO-Based PCIe MUX
	5.2 Key Migration
	5.3 Driver Contexts Migration
	5.4 Statically Allocated Bounce Buffer
	5.5 Data Holder Driver API For Copying

	6 Security Analysis
	6.1 Malicious Data Holder
	6.2 Malicious Hypervisor
	6.3 Collusion

	7 Evaluation
	7.1 GPU Travelling Overheads
	7.2 Synthetic Benchmarks
	7.3 Application Evaluation with llm.c
	7.4 Summary of Results

	8 Related Works
	9 Future Works and Outlooks
	10 Conclusion
	References

