
Crossing Shifted Moats: Replacing Old Bridges with New Tunnels
to Confidential Containers

Enriquillo Valdez
IBM Research

Yorktown Heights, USA
rvaldez@us.ibm.com

Salman Ahmed
IBM Research

Yorktown Heights, USA
sahmed@us.ibm.com

Zhongshu Gu
IBM Research

Yorktown Heights, USA
zgu@us.ibm.com

Christophe de Dinechin
Red Hat

Valbonne, France
cdupontd@redhat.com

Pau-Chen Cheng
IBM Research

Yorktown Heights, USA
pau@us.ibm.com

Hani Jamjoom
IBM Research

Yorktown Heights, USA
jamjoom@us.ibm.com

ABSTRACT
The Confidential Containers (CoCo) project, as an open-source
community initiative, inherits the system architecture of Kata Con-
tainers while integrating confidential computing to protect cloud-
native container workloads. However, there exists a misalignment
in the threat model and trusted computing base (TCB) between Kata
Containers and confidential computing. The shifted trust bound-
aries could potentially expose a range of vulnerabilities, particularly
in scenarios where a malicious actor on the host gains access to
the CoCo’s unprotected control interface. This paper conducts a
thorough examination of CoCo’s system architecture, exploring the
attack surface resulting from the discord in trust boundaries. We
have assessed all API endpoints of CoCo’s control interface, catego-
rizing them based on their security properties. Drawing from these
insights, we have developed a bifurcation approach to splitting
CoCo’s control interface. This involves establishing an owner-side
controller and minimizing the capabilities of the existing host-side
controller. Under this framework, the host-side controller is exclu-
sively responsible for allocating and recycling compute resources,
while dedicated workload owners can directly manage their con-
tainers through alternative secure tunnels. This approach ensures
seamless integration with cloud-native orchestration layers and
aligns CoCo with the threat model of confidential computing. By
doing so, it effectively prevents untrusted hosts from accessing
confidential data and interfering with the execution of workloads
within protected domains.

CCS CONCEPTS
• Security and privacy → Systems security.

KEYWORDS
Confidential Computing; Confidential Containers

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10.
https://doi.org/10.1145/3658644.3670352

ACM Reference Format:
Enriquillo Valdez, Salman Ahmed, Zhongshu Gu, Christophe de Dinechin,
Pau-Chen Cheng, and Hani Jamjoom. 2024. Crossing Shifted Moats: Replac-
ing Old Bridges with NewTunnels to Confidential Containers. In Proceedings
of the 2024 ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3670352

1 INTRODUCTION
Confidential computing has fundamentally changed the threat land-
scape for computation on third-party machines. It promotes the
concept of a minimized trusted computing base (TCB), wherein the
root-of-trust comprises the underlying processors and extends to
a designated set of CPU-attested software modules. Notably, the
host software stack is excluded from this TCB. Adhering to this
small TCB shifts the responsibility of attesting the platform to the
workload owners.

At the same time, the cloud industry is embracing a cloud-native
model, characterized by packaging applications as containers and
relying on orchestration tools, such as Kubernetes or OpenShift,
for managing, scaling, and load-balancing containerized services.

Confidential Containers (CoCo) [10] project is a Cloud Native
Computing Foundation (CNCF) open-source initiative that aims to
bridge these two endeavors by protecting cloud-native container
deployments with confidential computing. CoCo inherits the exe-
cution model and system architecture of the Kata Containers [12]
project, which encapsulates containers with lightweight virtual ma-
chines (VMs). CoCo enhances the security by substituting regular
VMs in Kata with confidential VMs and introducing additional ser-
vice components, including key broker/management, image build-
ing/registry, and attestation, to facilitate the container deployment.

At its core, the trust boundaries of confidential computing and
Kata Containers exhibit an inherent misalignment. Confidential
computing provides adversaries with an advantage in controlling
the host software stack, which is no longer deemed trustworthy. In
contrast, the Kata model retains a feature-rich workload controller
that operates on the host. This controller receives commands from
the orchestration layer, such as the Kubernetes control plane, and
governs the in-VM kata-agent responsible for managing container
workloads. Adhering to the original design of Kata introduces a
series of new security vulnerabilities. These vulnerabilities, in turn,
heighten the risks of information leaks and execution tampering

1390

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3658644.3670352
https://doi.org/10.1145/3658644.3670352

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

within protected domains, mitigating the security benefits brought
by confidential computing.

In this paper, we undertake a systematic assessment of the attack
surface within the current implementation of CoCo. We investigate
how adversaries in the current setting could access confidential
data or manipulate the execution of container workloads within
confidential VMs. We have conducted a series of security experi-
ments that involve the misuse of individual or combined CoCo API
endpoints. Our experiments reveal that, by exploiting CoCo’s un-
protected control interface, adversaries can achieve a spectrum of at-
tack effects. These effects include leaking a neighboring container’s
memory, obtaining runtime metrics, controlling the execution of
target containers, disrupting critical system services by manipulat-
ing the date and time settings, and overwriting critical files within
the confidential VMs. Notably, these effects fundamentally violate
the security principles of confidential computing, which is designed
to prevent such adversarial actions. We identified the misalignment
issue through our involvement in the research and development
of CoCo. Our findings are not limited to CoCo. They extend to any
software embarking on the integration of confidential computing
into its execution flow. Our paper aims to raise awareness about
the need to scrutinize existing designs under the new threat model
of confidential computing and re-examine the control interface and
data crossing the shifted trust boundary.

To bridge this security gap, we have developed a bifurcation
solution to split CoCo’s control interface. This design partitions all
API endpoints of CoCo into two distinct controllers, based on their
inherent security properties. The host-side controller is now limited
in its scope, primarily responsible for resource allocation during
the initialization phase and resource recycling in the termination
phase. It no longer holds the privilege to access private data or
assert control over operations within confidential VMs. In contrast,
authorized workload owners gain the ability to directly manage
their containers through an owner-side controller. This controller uti-
lizes CoCo’s attestation infrastructure to establish a secure tunnel
directly with the kata-agent managing the workload within the
confidential VM. This redesign serves a dual purpose: it aligns CoCo
with the threat model of confidential computing, while ensuring
seamless integration with cloud-native orchestration layers.

Responsible Disclosure. Given that CoCo is an open-source
project still in the developmental phase, vulnerability reports are
managed through public GitHub issues [2]. Our findings have been
promptly reported to the CoCo community, and we actively en-
gaged in discussions about these issues during communitymeetings.
We have submitted two pull requests 1 2 that include the implemen-
tation of the split control interface. This collaborative and transpar-
ent approach ensures that identified vulnerabilities are addressed
responsibly within the open-source community.

Roadmap. The rest of this paper is structured as follows. Sec-
tion 2 provides the background knowledge of Kata Containers and
confidential computing. We explain how CoCo integrates both tech-
nologies. Section 3 delves into the vulnerable control interface of
CoCo stemming from the misaligned threat model. We categorize
potential attacks into two primary groups, information leakage (IL)
1https://github.com/kata-containers/kata-containers/pull/9159
2https://github.com/kata-containers/kata-containers/pull/9752

and execution tampering (ET), and investigate their security im-
plications respectively. Section 4 presents five concrete security
experiments, demonstrating what can be achieved by attackers to
exploit CoCo’s control interface. Section 5 describes our proposed
defense, which involves a bifurcation of CoCo’s control interface
to serve two distinct controllers. Section 6 evaluates our defense
approach from both security and performance perspectives. Sec-
tion 7 discusses the compatibility of these changes with the broader
container ecosystem and highlights potential avenues for future
research. Section 8 provides insights into related works in the field.
Section 9 concludes the paper.

2 BACKGROUND
To comprehend the execution flow and system architecture of CoCo,
we begin by providing background knowledge about Kata Contain-
ers and confidential computing. This understanding sets the stage
for a detailed explanation of howCoCo integrates both technologies
and the security implications of such integration.

2.1 Containers → Kata Containers
Containers are self-contained and fully functional executable pack-
ages. They encompass not only the application code but also the
necessary runtime components, libraries, and system configura-
tions, enabling them to operate consistently across different com-
puting environments. The isolation and resource management of
containers rely on the underlying security features of the Linux ker-
nel. These features include namespaces, cgroups, capabilities,
SELinux, AppArmor, seccomp, among others. Despite these security
measures in place, running containers directly on bare-metal ma-
chines is considered insecure [15–17, 51], potentially jeopardizing
the underlying host system.

The fundamental concept behind Kata Containers revolves around
the enforcement of isolation by encapsulating container workloads
within VMs. This approach is designed to contain the impact of
potential attacks within the VM boundaries, preventing them from
cascading into the host system. On the other side, Kata Containers
strives to achieve performance comparable to bare-metal containers,
by using lightweight MicroVMs to expedite boot time and minimize
resource utilization.

We provide an overview of the workflow for creating and man-
aging containers using Kata Containers. The process begins with
a single instance of containerd-shim-kata-v2 (abbreviated as
kata-shim), which is responsible for receiving API calls from the
container runtime engine, e.g., containerd. When tasked with cre-
ating a container, kata-shim initiates the process by invoking a
hypervisor to start a VM. Within this VM, a long-running process
known as the kata-agent is launched during boot time. The kata-
agent assumes the role of a supervisor, responsible for creating
and managing pod/containers within the VM. The term sandbox is
frequently used in the kata-agent’s API endpoints, and it typically
refers to the execution environment within the VM. Subsequently,
kata-shim (running outside the VM) communicates with the kata-
agent (running within the VM) using the gRPC APIs via a vsock
channel. The containerd pulls container images from an image
registry to the host machine. The kata-shim then mounts these
container images within the VM and instructs the kata-agent to

1391

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Host

Kubelet

Containerd

Kata-Shim

Key Broker Service

Key Management Service

Attestation Service

Confidential VM

Pod

Kata-Agent

Image

Attest

Hypervisor

Image
Registry

Workload Owner

Figure 1: System Architecture and Workflow of Confidential Containers

create and start the containers. The entire life cycle of the pod
and its constituent containers is managed via the control interface
between the kata-shim and the kata-agent.

Threat Model of Kata Containers. It is important to emphasize
that Kata is specifically designed to provide defense against poten-
tially malicious container workloads. As such, it operates under
the threat model that the host software components, e.g., contain-
erd, kata-shim, the hypervisor, and the communication between
kata-shim and kata-agent, are trusted.

2.2 Confidential Computing
Confidential computing leverages hardware-based Trusted Execu-
tion Environments (TEEs) to protect computation within protected
domains on third-party machines. The primary focus of these tech-
nologies centers on protecting data-in-use, which pertains to data
loaded intomainmemory, while alsominimizing the root-of-trust to
the processors. Despite variations in implementation and terminol-
ogy across these technologies, they adhere to fundamental security
principles that align with similar system designs. These principles
encompass several key aspects: (1) introduction of new execution
modes or privilege levels for workloads and workload monitors,
(2) enclosing workload management functions to vendor-signed
firmware, (3) secure or measured launch of trusted components, (4)
enforcing memory access controls or providing memory encryption
protection, and (5) allowing remote workload owners to verify the
integrity of the workloads and the authenticity of the underlying
processors.

The granularity of protected domains can vary depending on the
specific TEEs employed. For instance, Intel Software Guard Exten-
sions (SGX) [37] offers protection at the process level, protecting
a portion of memory referred to as an enclave within a single
process. In recent times, several CPU vendors have introduced VM-
based TEEs that integrate with hardware-assisted virtualization,

providing execution protection at the VM level. Representative sys-
tems in this category include AMD Secure Encrypted Virtualization
(SEV) [27, 28, 42], Intel Trust Domain Extensions (TDX) [26], IBM
Secure Execution (SE) [23], Protected Execution Facility (PEF) [22],
and ARM Confidential Compute Architecture (CCA) [32]. VM-
based confidential computing benefits from a well-defined trust
boundary established through virtualization isolation. This ap-
proach enables the execution of unmodified applications and con-
tainers within VMs without the need of refactoring application
code.

Threat Model of Confidential Computing. Confidential com-
puting has introduced a new threat model. This model operates
under the assumption that potential adversaries may have physical
or remote access to a machine and could potentially gain control
of the entire host software stack, including the boot firmware, host
operating system (OS), and hypervisor. The primary objective of
this model is to preserve the confidentiality and integrity of the code
and data contained within the protected domains. However, it is
important to note that these techniques cannot guarantee availabil-
ity. Adversaries with control over the host software can manipulate
compute resources and potentially launch Denial of Service (DoS)
attacks.

2.3 CoCo = Kata + Confidential Computing
CoCo represents a convergence [1] of these two key technologies:
Kata Containers and VM-based confidential computing. It ensures
that the deployed containerworkloads receive runtime protection in
terms of both confidentiality and integrity. Furthermore, to adapt to
confidential computing, CoCo also introduces a suite of supporting
services, including attestation, key provisioning, and encrypted
container images.

The overall system architecture and workflow of CoCo closely
resemble that of Kata Containers, with some adaptations made for

1392

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

confidential computing. In this context, we highlight three major
differences (numbered in Figure 1) introduced by CoCo:

➀ Confidential VM. In CoCo, the kata-shim launches a confi-
dential VM rather than a regular VM. This confidential VM initially
contains no secret and boots with a modified kata-agent. As of
the time of writing, CoCo can support three VM-based TEEs: AMD
SEV, Intel TDX, and IBM SE.

➁ Attestation and Key Provisioning. Unlike Kata, where the
launched VM is inherently trusted due to its threat model, the
confidential VM in CoCo must prove its trustworthiness through
attestation [14]. To achieve this, CoCo’s kata-agent spawns an at-
tester to retrieve signed evidence from the underlying TEE. This
evidence includes measurements of both the hardware platform and
guest software stack. The attester then communicates with the
Key Broker Service (KBS) [48], which in turn verifies the evidence
with the attestation service. Once verified, the KBS obtains the
keys from the Key Management Service (KMS) and delivers them
securely to the attester. The keys are used for unpacking con-
tainer images, i.e., decrypting image files and verifying the digital
signatures.

➂ Image Pulling and Unpacking. Unlike Kata, containerd and
kata-shim should no longer control the image pulling as they have
been excluded from the TCB in confidential computing. Therefore,
in CoCo, the workload owner is responsible for signing and en-
crypting the container images, and pushing these encrypted images
to the image registry during the preparation stage. Subsequently,
the kata-agent requests the image management library to pull
these encrypted container images and unpack them using the keys
obtained from the KBS.

Threat Model of Confidential Containers. It is evident that
confidential computing operates under a stronger threat model and
a smaller TCB in comparison to Kata Containers. To align with the
security principles of confidential computing, CoCo must adopt an
equivalent threat model consistent with confidential computing
standards. This adjustment ensures that CoCo maintains the height-
ened security posture necessary for protecting container workloads
within confidential VMs.

3 SECURITY IMPLICATIONS OF SHIFTED
TRUST BOUNDARIES

As we have mentioned in Section 2, to establish a secure execution
environment for container deployment, CoCo has added several
new hardening features. However, despite these enhancements, the
host control plane continues to manage container workloads via the
control interface between kata-shim and kata-agent at runtime.
It is essential to note that this control interface lacks adequate
protection and still relies on gRPC APIs through a vsock channel,
mirroring the setup in Kata Containers.

In the CoCo’s threat model, kata-shim and kata-agent have
been placed into different security realms: kata-shim is no longer
considered trusted and kata-agent remains protected in the confi-
dential VM. This control interface represents a substantial attack
surface, exposing the code and data within confidential VMs to
exploitation if a malicious actor gains control over the kata-shim.

The CoCo community has made some initial attempts to tackle
this issue. One such effort involves enabling workload owners to
create a permission list that can disable specific sensitive APIs, like
ExecProcess and ReseedRandomDev [38], to guard against poten-
tial attacks from the host software stack. Microsoft Azure further
allows the workload owner to define a comprehensive security pol-
icy [3] for kata-agent’s API calls and their associated parameters.
The integrity of the policy can be verified by the kata-agent and
the enforcement of the policy uses the Open Policy Agent (OPA).

However, it is important to note that the existing API endpoints
serve a broad spectrum of functions related to container manage-
ment. Disabling certain APIs cannot provide a solution for mitigat-
ing all types of attacks, as we illustrate in Section 4. Furthermore,
such actions may also have a substantial impact on the operational
efficiency and functionality available to workload owners.

As the control interface remains unprotected, adversaries (e.g.,
rogue host administrators) can intercept incoming API commands
from workload owners, modify these commands, and even inject
new commands into the communication channel. This capability
empowers them to achieve two primary objectives: (1) extracting
sensitive information from the workloads and (2) manipulating the
execution of workloads, within confidential VMs. Following a com-
prehensive analysis of 38 API endpoints of kata-agent, as detailed
in Table 1, we highlight the API endpoints that can potentially serve
as attack vectors for enabling information leakage and execution
tampering attacks.

3.1 Information Leakage
We have identified nine API endpoints (marked with IL in Table 1)
that, either individually or in combination, can potentially serve
as attack vectors for leaking sensitive information from workloads
within confidential VMs. These API endpoints include Create-
Container, ExecProcess, GetGuestDetails, GetMetrics, Pul-
lImage, ReadStderr, ReadStdout, StartContainer, StatsCon-
tainer. In Section 4.1, we demonstrate how adversaries can access
the memory of a victim’s container by deploying a rogue con-
tainer alongside the victim’s container. Additionally, in Section 4.2,
we illustrate how adversaries can retrieve the runtime metrics of
workloads within the confidential VM. These attacks breach the
confidentiality protection enforced by TEEs.

3.2 Execution Tampering
We have identified thirteen API endpoints (marked with ET in
Table 1) that have the potential to serve as attack vectors for ex-
ecution tampering attacks. Attackers can exploit such API end-
points to disrupt the execution process. This disruption could have
severe consequences, particularly if a critical service is operat-
ing within confidential VMs. A few examples of these API end-
points include RemoveContainer, ExecProcess, PauseContainer,
ResumeContainer, CopyFile, ReseedRandomDev, etc. In Section 4.3,
we illustrate how adversaries can cause execution tampering by
pausing, resuming, or even removing a confidential container. In
Section 4.4, we demonstrate an attack where adversaries can disrupt
critical services and functionalities by manipulating the date and
time settings of a confidential VM. Furthermore, in Section 4.5, we
show that adversaries can add or overwrite any critical files in the

1393

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: This is a list of Kata-agentAPI endpoints, showing the attack types, partitioning labels, and description of functionalities.
The labels Host-Exclusive and Owner-Exclusive indicate that an API is exclusively assigned to either the host-side or owner-
side control plane. The labels Sanitized , Shared , and Switch denote the extent of API sharing between the control planes.
Sanitized means that the host-side invocation of an API undergoes sanitization to prevent information leakage (IL) or execution
tampering (ET). Shared denotes that both control planes have access to the same API functionality. Switch indicates the
host-side access to the API is restricted to the sandbox initialization phase.

API endpoint Attack Types Partitioning Label Description
AddARPNeighbors Host-Exclusive Adds ARP neighbors
CreateSandbox Host-Exclusive Creates a sandbox environment
DestroySandbox Host-Exclusive Destroys a sandbox environment
GetIPTables Host-Exclusive Retrieves iptables of a sandbox
GetVolumeStats Host-Exclusive Gets volume status of a guest
ResizeVolume Host-Exclusive Resizes a volume of a guest
SetIPTables Host-Exclusive Sets iptables of a sandbox
UpdateInterface Host-Exclusive Updates an interface in a sandbox
UpdateRoutes Host-Exclusive Updates routes in a sandbox
CopyFile ET Owner-Exclusive Writes files into the VM’s /run directory
ExecProcess ET, IL Owner-Exclusive Creates and runs a process in a container
PauseContainer ET Owner-Exclusive Pauses execution of a container
PullImage ET, IL Owner-Exclusive Pulls an image in a sandbox
RemoveContainer ET Owner-Exclusive Removes a container from a sandbox
ReseedRandomDev ET Owner-Exclusive Sets seed on a random device
ResumeContainer ET Owner-Exclusive Resumes a paused container
SetGuestDateTime ET Owner-Exclusive Sets time of a sandbox
StatsContainer IL Owner-Exclusive Gets cgroup and network statistics
TtyWinResize Owner-Exclusive Resizes tty rows and columns
UpdateContainer ET Owner-Exclusive Updates a container’s resources
Check Shared Returns status of kata-agent
GetOOMEvent Shared Retrieves out of memory (OOM) event
ListInterfaces Shared Lists interfaces
ListRoutes Shared Lists routes
OnlineCPUMem Shared Reports online CPUs
Version Shared Retrieves kata-agent and API version
WaitProcess Shared Waits for a container’s signal
CloseStdin Sanitized Closes a container’s Stdin
GetMetrics IL Sanitized Gets resource usage of a sandbox
GetGuestDetails IL Sanitized Gets information of a sandbox and its agent
ReadStderr IL Sanitized Reads a container’s Stderr
ReadStdout IL Sanitized Reads a container’s Stdout
SignalProcess ET Sanitized Sends signal to a container
WriteStdin ET Sanitized Writes to a container’s Stdin
CreateContainer ET, IL Switch Creates a container
StartContainer ET, IL Switch Starts execution of a container
AddSwap Not Supported Adds a swap file to a sandbox
MemHotplugByProbe Not supported Notifies a hotplug memory event

1394

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

sandbox or container configurations as well as the rootfs. These
attacks breach the integrity protection enforced by TEEs.

4 SECURITY EXPERIMENTS
We have performed five distinct security experiments to demon-
strate how the unprotected CoCo control interface can be exploited.
In the security experiments, we assume the role of an adversary
who has successfully infiltrated the host system and gained control
over kata-shim. With access to the host file system, the adversary
can obtain the sandbox and container IDs, which are used for
identifying target containers within confidential VMs. Leveraging
these acquired IDs, the adversary sends gRPC API commands to the
kata-agent through the vsock channel to carry out the attacks. To
facilitate the process of invoking APIs, we rely on the kata-agent-
ctl [47], a utility tool provided by Kata Containers, to exercise
the control interface of kata-agent. This tool allows us to directly
issue API commands and receive results from the kata-agent, in
the same position as the kata-shim.

Hardware/Software Configuration for Experiments. Our test
machine has a two-socket configuration with 4th Generation Intel
Xeon Scalable (Sapphire Rapids) processors (96 cores running at
1.5GHz) and 30 GB of memory. The host OS is Linux kernel 5.15-
SPR.BKC.PC.v8.8. We utilize Intel TDX (version 1.0) as the TEE to
initiate the confidential VMs in CoCo. It is worth noting that our
experiments are not tied to any specific TEEs. The results should
be broadly applicable to other TEEs that are supported in CoCo.

4.1 Leaking Neighbor Container’s Memory
This attack extracts the memory pages from one or more processes
within a confidential container to retrieve sensitive data such as
application code, credentials, and encryption keys. The private
memory pages in a confidential VM should only contain ciphertext
or potentially all-zero [24]. Thus, any attempts by an adversary
to read the memory pages from outside the VM should only get
encrypted or all-zero content. However, we show that an attacker
can bypass the memory encryption protection by exploiting the
unprotected control interface between the kata-shim and kata-
agent to perform memory dumping within the VM. As a result,
all the dumped memory is in plaintext and is ready for memory
forensic analysis.

The key enabler of this attack is that one container can observe
another container’s processes if they are in the same pod of a
confidential VM. This mutual process visibility opens the door to
potential misuse. A rogue administrator with access to the host
control plane can exploit this capability to access and read the
memory of another process.

To illustrate this attack, we assume that a container (referred to
as the victim) is already operational within a confidential VM as the
attack unfolds. Then the attack proceeds step by step as follows:

• Initially, the adversary examines the host file system to ex-
tract the sandbox ID. The sandbox ID is located in the host di-
rectory /run/kata-containers/shared/sandboxes/ for the
target confidential VM.

• Following this, the adversary creates a new container within
the same sandbox, utilizing the previously obtained sand-
box ID and the kata-agent-ctl tool. This newly created

Table 2: Statistics of dumping memory from neighbor pro-
cesses by the attacker container

Victim Container nginx alpine-top alpine-custom

Raw Memory 1728 KB 172 KB 156 KB
Non-zero Memory 43.57 KB 1.18 KB 0.51 KB
Time to Dump 0.78 s 0.34 s 0.24 s
Time to Transfer to Host 0.3 s 0.2 s 0.2 s

container is dubbed the attacker container and operates as
a neighbor to the victim container. The attacker container
has the necessary code or scripts to execute the subsequent
phases of the attack.

• Once the attacker container becomes operational within the
sandbox, the embedded scripts inspect the memory map-
pings of all processes running within the victim container,
dump them, and transfer them to the host file system for
offline analysis for sensitive content.

• Finally, the attacker container terminates after completing
its memory-dumping operation.

We performed this attack on three victim containers (nginx,
alpine-top, and alpine-custom). The nginx container initiates
an nginx web server upon startup. The alpine-top executes the
top command within an alpine Linux environment at container
launch. Additionally, we created a customized container named
alpine-custom, which starts a program containing an embedded
secret. Our objective is to search for this secret within the memory
dump as evidence, determining the success of the attack.

We also prepared an alpine-based attacker container. We first
launched all the victim containers in a confidential VM using the
CoCo stacks (i.e., containerd, kata-shim, kata-agent, KBS, etc.).
Once the victim containers were operational, we started the at-
tacker container by invoking the PullImage, CreateContainer,
and StartContainer via the kata-agent-ctl tool. The attacker
container performed the memory dumping of the processes of
nginx (master process), top, and the customized program, then
transferred the dumped memory to the host. Table 2 presents the
statistics regarding memory dumping. The data indicate that all
attacks can be completed approximately within one second, thereby
making detection challenging.

During the offline analysis, we scrutinized the dumped rawmem-
ory content to identify sensitive and secret information. In this
experiment, we assumed the role of the adversary and employed a
straightforward byte-by-byte reading method to locate the secret
content. For instance, as illustrated in Figure 2, within the memory
dump of the top process, we could extract information related to all
running processes within the system. Additionally, we validated the
adversary’s ability to identify sensitive data from the memory dump
by possessing prior knowledge of some secret data that the custom
victim container writes to its heap. Our simple analysis successfully
extracted the secret data from the memory dump of the process of
the custom container. However, it is important to note that in real-
ity, the offline analysis process typically requires more advanced
and comprehensive memory forensics approaches [39–41].

This experiment demonstrates the possibility of exploiting CoCo
APIs to inject an attack container into a confidential VM, leading to

1395

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Mem: 902720K used, 6806400K free, 734120K shrd, 980K buff, 782384K cached
CPU: 0% usr 0% sys 0% nic 100% idle 0% io 0% irq 0% sirq
Load average: 0.00 0.00 0.00 1/82 491
 PID PPID USER STAT VSZ %VSZ CPU %CPU COMMAND
 473 0 999 S 55580 1% 2 0% redis-server *:6379
 489 0 root S 4396 0% 2 0% top
 30 0 root S 1720 0% 0 0% /bin/sh
 29 0 root R 1620 0% 2 0% top
 1 0 65535 S 968 0% 3 0% /pause

 .. 0 root S 11388 0% 2 0% nginx: master process nginx -g dae
 30 0 root S 1720 0% 0 0% /bin/sh
 29 0 root R 1620 0% 2 0% top
 1 0 65535 S 968 0% 3 0% /pause

 0% awk {print $(NF - 1) * 1000}
 422 30 root S 1604 0% 2 0% grep Transferred
 421 30 root S 1000 0% 0 0% scp -v 2-5561dffe9000-5561e0007000

Current Processes in
the Attacker Container

History Processes in
the Victim Container

Current Processes in
the Victim Container

System Runtime
Information

00000740: 0000 0000 0000 0000 1b5b 481b 5b4a 4d65 [H.[JMe
00000750: 6d3a 2039 3032 3732 304b 2075 7365 642c m: 902720K used,
00000760: 2036 3830 3634 3030 4b20 6672 6565 2c20 6806400K free,
00000770: 3733 3431 3230 4b20 7368 7264 2c20 3938 734120K shrd, 98
00000780: 304b 2062 7566 662c 2037 3832 3338 344b 0K buff, 782384K
00000790: 2063 6163 6865 640a 4350 553a 2020 2030 cached.CPU: 0
000007a0: 2520 7573 7220 2020 3025 2073 7973 2020 % usr 0% sys
000007b0: 2030 2520 6e69 6320 3130 3025 2069 646c 0% nic 100% idl
000007c0: 6520 2020 3025 2069 6f20 2020 3025 2069 e 0% io 0% i
000007d0: 7271 2020 2030 2520 7369 7271 0a4c 6f61 rq 0% sirq.Loa
000007e0: 6420 6176 6572 6167 653a 2030 2e30 3020 d average: 0.00
000007f0: 302e 3030 2030 2e30 3020 312f 3832 2034 0.00 0.00 1/82 4
00000800: 3931 0a1b 5b37 6d20 2050 4944 2020 5050 91..[7m PID PP
00000810: 4944 2055 5345 5220 2020 2020 5354 4154 ID USER STAT
00000820: 2020 2056 535a 2025 5653 5a20 4350 5520 VSZ %VSZ CPU
00000830: 2543 5055 2043 4f4d 4d41 4e44 1b5b 6d0a %CPU COMMAND.[m.
00000840: 2020 3437 3320 2020 2020 3020 3939 3920 473 0 999
00000850: 2020 2020 2053 2020 2020 3535 3538 3020 S 55580
00000860: 2020 3125 2020 2032 2020 2030 2520 7265 1% 2 0% re
00000870: 6469 732d 7365 7276 6572 202a 3a36 3337 dis-server *:637
00000880: 390a 2020 3438 3920 2020 2020 3020 726f 9. 489 0 ro
00000890: 6f74 2020 2020 2053 2020 2020 2034 3339 ot S 439
000008a0: 3620 2020 3025 2020 2032 2020 2030 2520 6 0% 2 0%
000008b0: 746f 700a 2020 2033 3020 2020 2020 3020 top. 30 0
000008c0: 726f 6f74 2020 2020 2053 2020 2020 2031 root S 1
000008d0: 3732 3020 2020 3025 2020 2030 2020 2030 720 0% 0 0
000008e0: 2520 2f62 696e 2f73 680a 2020 2032 3920 % /bin/sh. 29
000008f0: 2020 2020 3020 726f 6f74 2020 2020 2052 0 root R
00000900: 2020 2020 2031 3632 3020 2020 3025 2020 1620 0%
00000910: 2032 2020 2030 2520 746f 700a 2020 2020 2 0% top.
00000920: 3120 2020 2020 3020 3635 3533 3520 2020 1 0 65535
00000930: 2053 2020 2020 2020 3936 3820 2020 3025 S 968 0%
00000940: 2020 2033 2020 2030 2520 2f70 6175 7365 3 0% /pause
00000950: 0d2f 7061 7573 650d 2020 3020 726f 6f74 ./pause. 0 root
00000960: 2020 2020 2053 2020 2020 3131 3338 3820 S 11388
00000970: 2020 3025 2020 2032 2020 2030 2520 6e67 0% 2 0% ng
00000980: 696e 783a 206d 6173 7465 7220 7072 6f63 inx: master proc
00000990: 6573 7320 6e67 696e 7820 2d67 2064 6165 ess nginx -g dae
000009a0: 0a20 2020 3330 2020 2020 2030 2072 6f6f . 30 0 roo
000009b0: 7420 2020 2020 5320 2020 2020 3137 3230 t S 1720
000009c0: 2020 2030 2520 2020 3020 2020 3025 202f 0% 0 0% /
000009d0: 6269 6e2f 7368 0a20 2020 3239 2020 2020 bin/sh. 29
000009e0: 2030 2072 6f6f 7420 2020 2020 5220 2020 0 root R
000009f0: 2020 3136 3230 2020 2030 2520 2020 3220 1620 0% 2
00000a00: 2020 3025 2074 6f70 0a20 2020 2031 2020 0% top. 1
00000a10: 2020 2030 2036 3535 3335 2020 2020 5320 0 65535 S
00000a20: 2020 2020 2039 3638 2020 2030 2520 2020 968 0%
00000a30: 3320 2020 3025 202f 7061 7573 650d 6f70 3 0% /pause.op
00000a40: 0a20 2020 2031 2020 2020 2030 2036 3535 . 1 0 655
00000a50: 3335 2020 2020 5320 2020 2020 2039 3638 35 S 968
00000a60: 2020 2030 2520 2020 3320 2020 3025 202f 0% 3 0% /
00000a70: 7061 7573 650d 650d 2030 2520 2f70 6175 pause.e. 0% /pau
00000a80: 7365 0d20 2030 2520 6177 6b20 7b70 7269 se. 0% awk {pri
00000a90: 6e74 2024 284e 4620 2d20 3129 202a 2031 nt $(NF - 1) * 1
00000aa0: 3030 307d 0a20 2034 3232 2020 2020 3330 000}. 422 30
00000ab0: 2072 6f6f 7420 2020 2020 5320 2020 2020 root S
00000ac0: 3136 3034 2020 2030 2520 2020 3220 2020 1604 0% 2
00000ad0: 3025 2067 7265 7020 5472 616e 7366 6572 0% grep Transfer
00000ae0: 7265 640a 2020 3432 3120 2020 2033 3020 red. 421 30
00000af0: 726f 6f74 2020 2020 2053 2020 2020 2031 root S 1
00000b00: 3030 3020 2020 3025 2020 2030 2020 2030 000 0% 0 0
00000b10: 2520 7363 7020 2d76 2032 2d35 3536 3164 % scp -v 2-5561d
00000b20: 6666 6539 3030 302d 3535 3631 6530 3030 ffe9000-5561e000
00000b30: 3730 3030 0000 0000 0000 0000 0000 0000 7000............

Memory Dump of Top

Figure 2: Extraction of Confidential Information from Memory Dump of Top

unauthorized access and memory leakage from another container.
Revealing the content of confidential memory, whether it contains
secrets or sensitive information, represents a breach of the memory
confidentiality guarantee provided by confidential computing. Such
a breach carries significant security risks, including data breaches,
identity theft, privacy violations, intellectual property theft, and a
variety of possible cyber-security incidents.

4.2 Obtaining Runtime Metrics Information
This attack allows an adversary on the host to acquire runtime
metrics information from within a confidential VM. Such statistics
should ideally only be accessible from within the VM [20]. With
memory encryption protection, the host should not have the ability
to retrieve such data from outside, even when employing virtual
machine introspection (VMI) [18].

To obtain runtime metrics from a confidential VM, we conducted
an attack by sending the GetMetrics API command to the kata-
agent operating within a confidential VM. Like the previous attack
scenario, we first obtained the sandbox ID from the host file system
and then invoked the GetMetrics API command. As a result of the
API command, we retrieved a substantial amount of runtimemetrics
information. This information includes process status, CPU time,
disk statistics, memory information, network device information,
virtual memory statistics, and other information.

The accessibility of such information by an adversary can lead
to various security implications, including the ability to conduct
reconnaissance for vulnerabilities, engage in potential side-channel
attacks, establish covert communication channels, identify potential
targets for DoS attacks, etc.

4.3 Pausing/Resuming/Removing Containers
This attack is in the category of execution tampering, illustrating
that adversaries can exploit specific kata-agentAPIs tomanipulate
confidential containers, including actions like pausing, resuming,
or even completely removing them. The goal is to cause service
disruption, data inconsistencies, data loss, and service unavailability.

It is different from the traditional availability attacks, which are
more coarse-grained and potentially lead to the termination of the
entire VM. In contrast, this attack operates on a finer-grained level,
exerting control over the execution of individual containers within
a VM.

Similar to the attack scenarios described before, we assume the
presence of an operational container within a confidential VM,
referred to as a victim container. We initiated the attack by first
extracting the sandbox and container IDs from the host file sys-
tem. Subsequently, we performed pause, resume, and removal op-
erations on the victim container using the PauseContainer, Re-
sumeContainer, and RemoveContainer APIs. We issued these API
commands and got return values indicating the success or failure
of each operation. We also successfully paused and resumed the
execution of the victim container and subsequently removed it, as
confirmed by the status message.

It is important to note that these container manipulations occur
within the confidential VM. They remain hidden from the host
control plane, which includes components like containerd or any
higher-level orchestration management systems. As a result, the
host control plane may still display outdated container status, mak-
ing it challenging for the workload owners to detect any tampering
attempts or send commands to the incorrect or non-existent target
containers, particularly when all control has to pass through the
host control plane. This lack of visibility can further complicate the
tasks of container management and monitoring.

This form of execution tampering attack carries significant secu-
rity implications. Illegitimate pause and resume actions can disrupt
services, lead to data loss, cause inefficient resource allocation, in-
troduce security vulnerabilities, and increase operational overhead.
Unauthorized removal of container workloads can compromise the
availability and integrity of services.

4.4 Setting Bad Date and Time
Many applications rely on accurate time sources to function prop-
erly. However, malicious modifications to date and time settings can

1396

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

disrupt the execution of processes and lead to significant security
vulnerabilities. For instance, security mechanisms, such as public
key certificates and digital signatures, depend on precise time infor-
mation. Similarly, time-based authentication tokens, event logging,
scheduled tasks, backup services, and software licensing mecha-
nisms all rely on accurate timestamps for their operations. Even
monitoring and auditing tasks can be compromised if the system
time is tampered with.

CoCo exposes the SetGuestDateTime API to the host. Adver-
saries can exploit this API to maliciously alter the date and time
settings within a VM. To illustrate the impact of this attack, we
established a Transport Layer Security (TLS) channel using TLS
certificates to communicate with a container from a client program.
Subsequently, we exploited the SetGuestDateTime API to manip-
ulate the VM’s system time, adjusting it to an old timestamp (e.g.,
January 1, 1970). Due to this alteration, any subsequent attempts
to establish a TLS channel between the TLS server and the client
program failed, primarily because the client certificate’s validity
period was out of range from the current time. This serves as a
clear example of the disruptive consequences that can arise from
tampering with the date and time settings.

4.5 Writing Sensitive Files
This attack allows an adversary to conduct privilege escalation
attacks by adding new or overwriting existing files in the VM’s
/run/kata-containers directory. Since this directory stores all the
runtime data associated with managing and running containers in
the VM, writing into this directory has severe security ramifications
such as tampering with container execution, escalating privileges,
and adding or dropping capabilities.

To demonstrate this attack, we first created a confidential VM and
obtained its sandbox ID. After that, we utilized the kata-agent-
ctl tool to invoke the CopyFile API from the host to overwrite
the readonly flag of the VM’s rootfs from true to false . We
made this change by overwriting the config.json configuration
file located in the /run/kata-containers/<sandbox_ID>/ directory
within the VM. After that, we manually inspected the configuration
file and verified the reflected change. In addition to changing the
configuration files, an adversary can target a specific file or replace
any executables or libraries under the same directory.

5 DEFENSE APPROACH
To address the security gap discussed in Section 3, we propose a
redesign of CoCo’s control interface with a focus on minimizing the
attack surface. This redesign is guided by three security principles:

Realignment of Threat Model. Our defense approach must align
with the same threat model as confidential computing, which as-
sumes that the host software stack is untrusted. Consequently, the
host should not have the ability to access private data or exert
control over operations within protected domains. It is important
to note that, similar to confidential computing, our approach does
not address availability threats like DoS attacks.

Separation of Responsibilities.We advocate for a clear separa-
tion of responsibilities between the host-side and the owner-side

controllers. The host-side controller should focus solely on the allo-
cation and recycling of compute resources for confidential VMs and
be compatible with the orchestration layer. It should be restricted
from exercising other capabilities that would violate the threat
model of confidential computing. In contrast, we should empower
the workload owners to directly manage the deployed pod and
containers. This requires a thorough examination of the security
properties of each API endpoint, categorizing them for different
controllers.

Protection of Remote Control. We emphasize the importance of
ensuring that the owners of the container workloads are authorized
to manage containers. Additionally, the communication tunnel used
for sending commands from authorized workload owners should
have end-to-end protection to protect against unauthorized access
or tampering.

5.1 Design Principles
Our design involves the partitioning of CoCo’s API endpoints to
cater to two distinct controllers: the host-side and the owner-side.
Here, we describe the responsibilities of these controllers across
different phases in the life cycle of containers:

• Initialization Phase: during this phase, the host-side con-
troller takes charge of provisioning resources required to
launch confidential VMs. The kata-agent in the VM then
performs attestation to the KBS to obtain keys for unpacking
container images and deploying pods and containers.

• Runtime Phase: in this phase, the workload owner steps in to
take control. The owner authenticates and establishes an end-
to-end secure tunnel for managing container deployments.
The owner possesses a local control plane that enables direct
communication with the kata-agent, giving them control
over their containers.

• Termination Phase: once containers have completed their
tasks, the host-side controller is responsible for the orderly
destruction of confidential VMs and the recycling of all as-
sociated resources.

We aim to avoid expanding the TCB when deploying workloads
on host systems. The design does not introduce any additional com-
ponents to host systems. Furthermore, it also maintains a flexible
deployment model that is compatible with the existing cloud-native
orchestration layer. Now let us delve into the details.

Partitioning of CoCo’s Control Interface. We have categorized
the kata-agent API endpoints based on their intrinsic security
properties concerning confidentiality, integrity, and availability.
In Table 1, we provide a list of the kata-agent’s APIs with par-
titioning labels. Note that some APIs in the table are marked as
Not Supported , such as AddSwap and MemHotplugByProbe. It is
because the corresponding features are not yet supported for confi-
dential VMs, thus these APIs are disabled by default in CoCo.

We have identified a group of APIs that have distinct functional
boundaries, allowing us to allocate them exclusively to either the
host-side or the owner-side:

Host-Exclusive : APIs related to the availability of host resources
are designated for the host-side. These APIs provide access to and

1397

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Workload
Owner

Kubectl
Split

plugin

Kubelet

Containerd

Kata-Shim

Confidential VM

Pod

Kata-Agent

Worker Node (Host)

API-Server

Scheduler

Controller

Etcd

Kubernetes Control Plane

Secure Tunnel

API Proxy
Server

Key Broker
Service

Figure 3: Partitioned Architecture of Confidential Containers Control Plane

usage of host resources, such as the confidential VM and host net-
working. An example is the CreateSandbox, which initializes the
sandbox environment inside a VM after the VM boots. Another
example is the DestroySandbox, which destroys the sandbox envi-
ronment during the termination phase, terminating all containers
in the sandbox and notifying the kata-agent to exit.

Owner-Exclusive : APIs affecting the confidentiality or integrity
of the owner’s workloads are reserved for the owner-side. The idea
is that security-sensitive APIs are restricted to the owner-side only.
For example, workload owners can invoke the ExecProcess to
create and run a process inside of a container. They can also invoke
RemoveContainer to remove a container within a VM.

We also recognize that certain APIs, whose scopes overlap with
both the host’s operational and availability objectives and the
owner’s confidentiality and integrity requirements, must be sepa-
rated. Separating an API entails providing a version for the host-
side and another for the owner-side. For these separated APIs, we
introduce three types of labels:

Shared : for shared APIs, the same functionality is available to
both the host-side and the owner-side. These APIs are designed
to allow visibility of host-allocated resources or notify the owner-
side of events. Examples include ListInterface and ListRoute,
which provide both the host-side and the owner-side with network
configuration information of the confidential VM.

Sanitized : in the case of sanitized APIs, we ensure that the
host-side variant does not violate the owner’s security require-
ments. The input or output of an API invocation is sanitized to
prevent the host-side from getting sensitive information from or
tampering with owner workload execution. Examples include the
GetGuestDetails and SignalProcess. When GetGuestDetails
is invoked from the host-side, its output is filtered to provide only
host-relevant metrics information. Similarly, the input of the Sig-
nalProcess is restricted to signaling the initial container associated
with the sandbox, preventing misuse by the host-side to terminate
any container process running in the confidential VM.

Switch : Switch APIs dynamically transition their roles from
Host-Exclusive to Owner-Exclusive . These APIs are accessible

only by the host during the initialization phase, after which the
control shifts to the owner. This labeling is designed to align with
CoCo’s execution model. CreateContainer and StartContainer
are two examples of Switch APIs. In CoCo, the host controller
utilizes these APIs to establish an initial (immutable) container
within the sandbox VM during initialization. This initial container
is integrated into the guest file system and undergoes verification
during startup. Subsequently, after attestation, we restrict access
to these APIs from the host-side controller, permitting invocation
exclusively by the owner-side controller.

Bifurcation of Control Plane. Based on the partitioned con-
trol interface, we introduce two separate controllers: the host-side
controller and the owner-side controller, which interact with the
kata-agent using distinct channels.

• Host-Side Controller. The host-side controller continues to
utilize the existing gRPC over vsock channel, but its capabil-
ities are substantially limited. It is now responsible only for
allocating and recycling compute resources.

• Owner-Side Controller. The owner-side controller establishes
a secure tunnel to the kata-agent within the VM, allow-
ing the workload owner to securely transmit commands to
the kata-agent. This setup ensures that requests and re-
sponses are protected during their transmission between
the owner-side and the kata-agent. They are only in plain-
text at the secure tunnel’s endpoints: the owner-side and
the confidential VM where the kata-agent operates. As a
result, the commands issued by the owner no longer traverse
the unprotected gRPC over vsock channel on the host sys-
tem. This configuration has the added benefit of bypassing
not only the untrusted host container runtime components
(e.g., kubelet, containerd, and kata-shim), but also the
orchestration layer (e.g., Kubernetes control plane).

Secure Tunnel Establishment. The owner secret delivery process
for establishing the secure tunnel between the owner-side controller
and the kata-agent is integrated into the remote attestation pro-
cess with the KBS, a trusted entity responsible for authenticating

1398

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

the owner-side controller and releasing owner secrets to CoCo. A
TLS client certificate of the owner-side controller is pre-registered
with the KBS before an owner initiates any workloads. During
sandbox initialization, the kata-agent requests the owner secret
from the KBS, providing a signed attestation report containing the
guest measurements. The KBS address is specified as a guest kernel
option and is included in the measurements. Upon successful veri-
fication, the KBS generates ephemeral public and private key pairs
for the kata-agent’s proxy server, returning them as the owner
secret, including the TLS client certificate for establishing the gRPC
TLS connection.

5.2 System Architecture
We describe the components of the partitioned control plane and
their interaction using a Kubernetes cluster deploying confidential
containers as shown in Figure 3.

Resource Provisioning. A workload owner uses the kubectl
cluster management tool [34] as the host-side controller to provi-
sion resources. To do so, kubectl interacts with the Kubernetes
API-Server to request a confidential VM on a host system. The
Kubernetes API-Server forwards the request to the kubelet pro-
cess running on a host system. The kubelet process [30] interacts
with the containerd and kata-shim to launch a confidential VM,
which then starts the kata-agent. As part of its startup process,
the kata-agent retrieves the owner secret from the KBS and starts
its API proxy server to service API requests that come from the
workload owner through a secure tunnel.

WorkloadManagement.Wehave developed a kubectl plugin [29],
called split, for workload owners to manage their containers in-
side confidential VMs. Acting as an owner-side controller, the split
plugin sends requests and receives responses to/from kata-agent’s
API proxy server by establishing a secure tunnel. Note that the work-
load owner pre-registers the split plugin’s TLS client public key
certificate with the KBS before starting the VM. This certificate
is provided as part of the owner secret to the kata-agent and al-
lows the API proxy server to authenticate connection requests from
the split plugin. After the initialization phase, the split plugin
retrieves communication parameters from the KBS using the sand-
box ID. These communication parameters consist of the public key
certificate of the generated key pair for API proxy server and the
IP address of the VM running the kata-agent’s API proxy server.
The split plugin uses these parameters to establish the secure tun-
nel with the kata-agent. During the runtime phase, the workload
owner executes split plugin commands to deploy containers in
the VM. When creating and starting a container, the split plu-
gin generates a sequence of API requests consisting of PullImage,
CreateContainer, and StartContainer to the kata-agent.

5.3 Implementation
For our implementation, we extended the CoCo branch (CCv0) [7],
embedding a gRPC TLS server into the kata-agent to handle API
requests from the owner side. Since the kata-agent is coded in
Rust [36], we leveraged tonic [46], a Rust package providing a
high-performing gRPC over HTTP/2 framework with TLS support.
The extension to the agent’s codebase has 900 lines of Rust, with an

additional 2394 lines of code automatically generated for client and
service stubs from the tonic build. Additionally, we developed the
kubectl split plugin [29] based on the kata-agent-ctl [47], a
low-level utility tool interacting with the kata-agent. Our version
of the tool establishes a TLS connection with the kata-agent for
sending API requests. The plugin code has 2300 lines of Rust.

6 DEFENSE EVALUATION
We conducted a comprehensive evaluation of our proposed defense
approach, examining both its security and performance implica-
tions. In the security assessment, we provide a detailed overview of
the steps taken to mitigate the attacks, highlighting the effective-
ness of our defense mechanisms. Additionally, in the performance
measurement, we present a comparative analysis between our im-
plementation and the original design of CoCo, showcasing any
performance trade-offs resulting from our approach.

6.1 Security Assessment
In Section 4, we discuss five attacks targeting the kata-agent API
endpoints exposed to the host-side controller for managing con-
tainer workloads. Our defense addresses these vulnerabilities by
removing or sanitizing these APIs from the host control plane, al-
lowing full control through an owner-side controller. Below, we
detail the mitigation strategies for each attack respectively.

Attack §4.1: This attack leverages the PullImage, CreateCon-
tainer, and StartContainer APIs to deploy an attacker container
within the same sandbox as the victim container, facilitating mem-
ory dumping. To counter this attack, we designate PullImage as
Owner-Exclusive , only allowing theworkload owner to request the
image pull. CreateContainer and StartContainer are classified
as Switch , limiting host-side controller access during initializa-
tion phase. In the following phases, only the owner-side controller
can invoke these APIs to launch new containers within a sandbox,
preventing attackers from injecting malicious containers.

Attack §4.2: This attack exploits the GetMetrics API to obtain
runtime metrics information of the sandbox. This API has been
classified as Sanitized . We still allow the host-side controller to
invoke this API while sanitizing returned results to remove sensitive
information. The owner-side controller can obtain original results.
This approach thwarts attackers from obtaining runtime metrics
from the host.

Attack §4.3:Attackers exploit PauseContainer, ResumeContainer,
and RemoveContainer APIs to manipulate containers within the
sandbox. By designating these APIs as Owner-Exclusive , we pre-
vent host-side controller invocation, thereby thwarting unautho-
rized container manipulation by adversaries.

Attack §4.4: This attack utilizes the SetGuestDateTime API to
modify the system time, thwarting attempts to establish a TLS
channel. We classify the SetGuestDateTime as Owner-Exclusive ,
thereby preventing unauthorized modification of date and time
within the sandbox by attackers on the host.

Attack §4.5: This attack exploits the CopyFile API to write files
into a confidential VM’s /run directory. By designating this API as

1399

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 3: The pod-level performance was evaluated using the crictl tool, while the container-level performance was assessed
using the kata-agent-ctl tool and the kubectl Split plugin separately. The average execution times for container-level API
invocations are presented in two columns: Total and API. A Total column includes both communication time andAPI processing
time, while an API column exclusively denotes API processing time. All time values are expressed in milliseconds.

Image name alpine nginx redis
Image ID b2aa39c304c2 a8758716bb6a bdff4838c172
Image size 7.05 MB 187 MB 138 MB
Pod-Level CoCo Split CoCo Split CoCo Split
runp 7825.2 7939.2 7978.3 7891.6 7986.5 7986.9
stopp 469.1 501.2 533.7 522.7 529.7 597.4
rmp 116.6 111.5 114.4 117.3 112.1 113.6
Container-Level Total API Total API Total API Total API Total API Total API
Check 2.9 5.5E-05 19.2 6.1E-05 3 5.5E-05 18.9 5.7E-05 2.9 5.4E-05 19.3 5.4E-05
CopyFile 7.6 0.038 19.5 0.036 7.5 0.032 19.8 0.039 7.5 0.034 19.5 0.036
CreateContainer 20.9 15.107 40.7 16.54 20.6 14.71 41.1 16.4 19.9 14.33 38.3 13.81
GetGuestDetails 3 0.032 19 0.02 3 0.026 19.1 0.019 2.8 0.032 19.2 0.018
GetMetrics 8.4 4.143 24.6 4.626 8.2 4.32 23.9 3.87 8.6 4.29 25.1 5.41
ListInterfaces 3 0.117 19.5 0.154 3 0.108 19.2 0.153 3 0.113 19.6 0.149
ListRoutes 3 0.171 19.1 0.194 3 0.164 19.1 0.204 3 0.15 19.2 0.206
PauseContainer 3 0.028 19.3 0.037 3 0.031 19.4 0.031 3 0.021 19.6 0.034
PullImage 719.5 714.02 679.70 650.8 2714.5 2708.4 2851 2833.37 2189.2 2183.75 2252.1 2222.58
RemoveContainer 3.1 0.553 19.8 0.727 3.8 0.584 19.9 0.785 3.3 0.585 20.1 0.695
ReseedRandomDev 3 0.024 19.1 0.032 3 0.029 19.1 0.029 3 0.028 19.3 0.03
ResumeContainer 3 0.015 19.1 0.065 3.1 0.017 19.1 0.029 3 0.017 19.1 0.025
SignalProcess 3 0.067 19.3 0.094 3 0.04 18.8 0.045 3 0.068 19.2 0.051
StartContainer 3.1 0.111 20.9 0.864 3 0.11 20.8 0.235 3.1 0.108 20.4 0.136
StatsContainer 5.4 1.95 20 0.55 3.7 0.49 20.6 0.57 4 1.228 20.3 0.545
Version 3 3.7E-04 18.9 6.0E-05 3 3.4E-04 19.1 5.9E-05 3 2.3E-04 18.9 6.5E-05
WaitProcess 3 0.047 19.2 0.048 3 0.045 18.8 0.087 3 0.062 19 0.067

Owner-Exclusive , host write access to the directory is restricted,
mitigating the attack.

Please refer to Table 1 for the complete list of API endpoints clas-
sification. By labeling certainAPIs as Owner-Exclusive , Sanitized ,
and Switch , we implement different API invocation policies, thereby
effectively minimizing host-side attack surface and mitigating po-
tential attacks.

6.2 Performance Measurement
For our performance evaluation, we used the same hardware setup
as the security experiments. The detailed configuration specifica-
tions are available in Section 4. We deployed three representative
container workloads — alpine, nginx, and redis — and measured
execution times for pod-level and container-level operations in
two distinct modes: CoCo and Split. In the CoCo mode, serving
as our baseline for comparison, we maintain the standard config-
urations of CoCo. Conversely, in the Split mode, we enable all
security features described in Section 5 to evaluate their impact on
performance.

Pod-level operations include the initiation, termination, and re-
moval of pods. To execute these operations, we utilized the Container
Runtime Interface (CRI) command-line tool, crictl [8], specifying
Kata as the runtime. This tool facilitated the creation of a new pod,
initiating a confidential VM and establishing its sandbox environ-
ment within the running confidential VM. We ran a crictl, a KBS,
and an image registry on the same host where the workloads were
deployed to ensure consistency and eliminate network variability.

Pod-level operations were measured due to the additional initial-
ization steps required in the Split mode, wherein the kata-agent
retrieves the owner secret from the KBS and initiates its API proxy
server — an overhead not present in the CoCo mode.

Container-level operations include the invocations of kata-
agent APIs. In the CoCo mode, we used the kata-agent-ctl [47]
tool to send requests over vsock, the same way as in the original
CoCo’s design. In the Split mode, we used the split plugin to
send API requests to the kata-agent via a secure channel.

We executed eachworkload ten times and computed the averages
of crictl commands (namely, runp, stopp, and rmp) and kata-
agent API invocations.

In Table 3, we first display the average execution times for the
pod-level operations in CoCo and Split modes. We observed that
the times for staring, stopping, and removing a pod in both modes
are relatively similar. The ratio of Split over CoCo execution time
is close to one for most operations, suggesting that the overhead
introduced by the kata-agent’s API Proxy has a negligible perfor-
mance impact on managing pods.

Subsequently, we present the execution times of container-level
operations by invoking the kata-agent APIs, which have been
modified to enable owner control. We break down the average
execution times for communication and API processing. They are
presented in two columns: Total and API. A Total column includes
both communication time and API processing time, while an API
column exclusively denotes API processing time. Computing the
geometric means of the Total columns using CoCo as the baseline

1400

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

yields values of 4.69, 4.76, and 4.8 when deploying the respective
images alpine, nginx, and redis. These results suggest that CoCo
mode is 4.69 to 4.8 times faster than Split mode. Conversely, our
analysis of the API execution times and their corresponding proxy
APIs shows minimal performance overhead when executing the
proxy APIs. This finding is supported by the computation of the
geometric means for the API columns, using CoCo as the baseline,
yielding values of 1.10, 1.07, and 0.96 for the respective images
alpine, nginx, and redis.

It is important to note that these performance overheads are
linked solely to each container management command. These over-
heads are only incurred when specific commands are invoked and
do not impact the runtime performance of the container workloads.

7 DISCUSSION
Here, we delve into the implications of our proposed design on
the existing and upcoming features of CoCo, while also outlining
potential avenues for future research.

7.1 Debugging
Given that confidential computing is specifically engineered to pro-
tect data-in-use, it inherently restricts mechanisms that expose data
to external processes on the host. This limitation applies to various
debugging tools, ranging from simple logging or tracing mecha-
nisms to more complex ones like VMI. Allowing protected data to
be exposed through such mechanisms would directly undermine
the core purpose of confidential computing and, therefore, cannot
be permitted.

Our proposed design effectively disables the interface exposed
to the untrusted host for debugging purposes. Conversely, it offers
a secure pathway for workload owners to remotely retrieve con-
tainer logs and execute commands for troubleshooting. If without
our design, the only alternative would be to block the corresponding
features entirely, rendering it nearly impossible to debug malfunc-
tioning containers in confidential VMs.

7.2 Data Sharing
Similarly, sharing data between containers using mechanisms like
shared memory or inter-process communication (IPC) contradicts
the principles of confidentiality, which prioritize keeping data pri-
vate to its owner. This does not introduce a new restriction about
CoCo or Kata, as containers are already isolated in different VMs.
Only containers within the same pod (and thus, within the same
VM) can effectively share memory via the kernel.

In theory, it is also possible to share memory pages with the
host via hypervisor-level mechanisms, as seen, for instance, when
using virtiofs. However, such mechanisms should be avoided
whenever possible, as they may expose owner data to the host,
similar to unencrypted serial consoles.

Our proposed design maintains the existing mechanisms con-
cerning sharedmemory. However, it securely enables owner-oriented
data sharing features such as CopyFile. This only allows workload
owners, rather than the host, to securely copy data to and from
containers.

7.3 I/O Operations
When a container wants to perform I/O operations, it has to rely
on hardware provided by the host, such as a network interface card
or a disk controller. This entails a level of data sharing between the
guest and host. The straightforward way to achieve that objective is
to use non-protected data pages in the guest memory. Existing TEE
technologies that rely on memory encryption all have mechanisms
to designate specific pages as shared. For instance, both AMD SEV
and Intel TDX allow guest VM owners to convert memory pages
from encrypted to shared by changing a specific bit in the guest
physical address (GPA). To preserve confidentiality, data on such
pages should still be encrypted by the users, typically using TLS
for networking or Linux Unified Key Setup (LUKS) for storage.

This aspect of I/O operations is already taken into account by
the existing CoCo implementation, and our proposal does not affect
its security. However, as discussed above, we do markedly improve
usability by facilitating owner access to encrypted I/O facilities,
exposing through existing channels such as ExecProcess or Copy-
File. The alternative in the current CoCo implementation is to set
up an ssh access to the container, which adds complexity to the
setup and must be done ahead of time even if such services are only
a contingency plan and not part of the core services provided by
the container.

Starting from the Hopper architecture, Nvidia has initiated sup-
port for confidential computing [13] on GPUs. The process in-
volves a GPU being integrated into the trust boundary following
authentication by a confidential VM. The current approach relies
on a software-based bounce-buffer technique, transferring data
through encrypted staging buffers in shared memory. As a result,
this method incurs limitations on CPU-GPU bandwidth and intro-
duces additional latency overhead during data transfer. To further
enhance I/O performance, the development of trusted I/O [4, 25] is
underway, built upon multiple industry standards, including the
TEE Device Interface Security Protocol (TDISP), Integrity and Data
Encryption (IDE), and Secure Protocol and Data Model (SPDM).
These efforts aim to support fast and secure I/O between confiden-
tial VMs and TEE-aware physical devices.

Such mechanisms will enable guests to verify the attestation of
devices and facilitate Direct Memory Access (DMA) to encrypted
memory. Consequently, this approach saves on the costly conver-
sion of memory pages and eliminates the need for additional data
copies. Our design will seamlessly leverage such trusted I/O accel-
eration once it becomes commonly available, by using a common
software stack that will be modified as needed to take advantage of
such devices.

7.4 Orchestration Interaction
A straightforward method to implement containers with confiden-
tial computing is to construct the entire cluster using confidential
VMs. Instead of initiating a confidential VM per pod (as seen in
CoCo), one could also use multiple confidential VMs to serve as
control and worker nodes within a traditional cluster setup [9].
This approach offers protection for both container workloads and
orchestration operations.

However, a drawback of this approach is that it shifts the entire
responsibility for operating and managing the clusters onto end

1401

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

users. This is incompatible with the cloud-managed Kubernetes-
as-a-service model, where users rely on cloud providers to man-
age the cluster resources. Many end users may also lack the exper-
tise required for managing clusters, making this approach poten-
tially more expensive and less flexible.

The primary advantage of the CoCo approach lies in the ability
for the cloud to still manage the control nodes and control the
compute resources for a cluster. This allows end users to ensure
that their workloads run within protected domains without having
to worry about orchestration. Splitting resources between confi-
dential and non-confidential sections is much more cost-effective.
The orchestration components in the control plane do not consume
confidential resources and can thus run on non-confidential nodes.
However, it is crucial to note that the control plane is no longer
considered trusted, and the data it contains is assumed to be acces-
sible by a rogue system administrator. This necessitates additional
design changes proposed in this paper.

Splitting the API responsibilities between host-side and owner-
side controllers, as we propose, makes this possible. However, this
implies that the entire orchestration layer is outside of the owner’s
control. The value added by this orchestration layer includes au-
tomatic provisioning of resources, auto-scaling, and transparent
fail-over, all of which should work with our design, but are not
controlled by it.

8 RELATEDWORK
In this section, we begin by reflecting on recent developments in
systems that utilize confidential computing to protect containers.
Following this, we delve into various research efforts concentrating
on attacks and defenses on general container security.

8.1 Protecting Containers with Confidential
Computing

Confidential computing aims to create a secure execution domain
that is isolated from other host components. One of the ongoing
debates in research revolves around the granularity of this protected
domain, whether it should encompass individual functions, libraries,
applications, or even entire virtual machines. Striking a balance
between ensuring trustworthiness and maintaining usability is the
key challenge in this regard.

Intel SGX [37] secures a specific memory region within an appli-
cation’s address space, requiring developers to decide which part
of their application should be enclosed for protection. However,
SGX’s protection granularity is not conducive to running unmod-
ified applications or containers, which typically rely on dynamic
linking with multiple libraries and require operating system call
services. To address this limitation, researchers have explored alter-
native approaches. These include the use of a shield layer, as seen in
Scone [5] and Panoply [44], or the incorporation of a library operat-
ing system (LibOS), exemplified by Graphene [49] and Occlum [43],
within the enclave.

Recent advancements in confidential computing technologies,
such as AMD SEV [27, 28, 42], Intel TDX [26], IBM SE [23], PEF [22],
and ARM CCA [32], tend to embrace a protection granularity at
the virtual machine level. This approach significantly eases the
challenge of running unmodified applications or containers, as all

the necessary libraries and system services are enclosed within the
same secure domain. Nevertheless, this shift can raise discussions
about whether the TCB has become excessively large.

The CoCo project begins by harnessing VM-based confidential
computing to protect container workloads within confidential VMs.
Recently, CoCo has extended its support to include process-based
isolation [11] using SGX and LibOS [43, 49]. CoCo’s objective is
to integrate with the Kubernetes-as-a-Service (or managed Ku-
bernetes), where cloud service providers (CSPs) host the Kuber-
netes clusters. However, as discussed in this paper, the introduction
of confidential computing necessitates a restriction on the capabili-
ties of the CSPs. They should only be able to allocate and recycle
compute resources, following the threat model of confidential com-
puting. They should not have the privilege to access private data
or exert control over the execution within the protected domains.

In a related development, Constellation [9] is another initiative
that leverages confidential computing for container deployment.
This approach seeks to secure both theworker nodes and the Kuber-
netes control plane nodes within confidential VMs. Consequently,
it is suitable for scenarios involving the deployment of self-managed
Kubernetes clusters in the cloud. This deployment style offers en-
hanced security benefits since all nodes operate within protected
domains. However, it also requires users to possess the expertise to
manage the cluster independently.

Our work focuses on the security implications of CoCo’s ap-
proach of integrating confidential computing and Kata Containers.
Our proposed design for splitting CoCo’s control interface can both
align with the threat model of confidential computing and support
cloud-managed Kubernetes clusters.

8.2 Attacks/Defenses in Container Security
In addition to industry solutions for securing containers with con-
fidential computing, there is a significant body of research focused
on identifying security vulnerabilities and proposing enhanced se-
curity features for containers. Here is a brief overview of some
notable research contributions in this domain.

Gupta [21] conducted a comparative analysis of the security of
containers and virtual machines. Bui [6] analyzed the security as-
pects of Docker containers, with a specific focus on their isolation
mechanisms and interactions with Linux kernel security features.
Grattafiori et al. [19] summarized various potential vulnerabili-
ties associated with containers. Luo et al. [35] identified potential
covert channels in Docker that could lead to cross-container in-
formation leaks. Gao et al. [15, 17] carried out security studies
on Linux namespaces and explored how information could leak
through memory-based pseudo file systems. Lei et al. [31] intro-
duced a system named SPEAKER, designed to reduce the number of
system calls available to containerized applications. Lin et al. [33]
conducted a systematic evaluation of container security using real-
world exploits and found that many of these exploits could succeed
within containers configured with default settings. Sun et al. [45] de-
veloped two security namespaces that enable autonomous security
control for containers. Gao et al. [16] explored methods to break the
performance confinement of cgroups, potentially impacting the
computing and I/O performance of co-resident containers. Xiao et

1402

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Enriquillo Valdez et al.

al. [50] investigated ways to breach the isolation of MicroVM-based
containers using operation forwarding attacks.

Our work draws inspiration from these prior studies on container
security and provides an in-depth examination of the security chal-
lenges associated with the CoCo.

9 CONCLUSION
In this paper, we have undertaken a comprehensive assessment
of Confidential Containers’s attack surface and delved into the
security vulnerabilities arising from the misalignment with the
confidential computing principles. Our security experiments have
revealed that by exploiting CoCo’s unprotected control interface,
adversaries can gain access to private data and manipulate the exe-
cution within the protected domains, effectively circumventing the
protection of confidential computing. To bridge this security gap,
we propose a redesign of CoCo’s control interface, which involves
constraining the capabilities of host-side controllers and granting
workload owners the authority to manage their containers through
an alternative secure tunnel. This approach ensures seamless inte-
gration with existing cloud-native orchestration layers and aligns
CoCo with the threat model of confidential computing.

ACKNOWLEDGEMENT
We extend our gratitude to Tobin Feldman-Fitzthum for his tech-
nical consultation and communication with the Confidential Con-
tainers community. Additionally, we sincerely thank our shepherd
and the anonymous reviewers for their insightful comments and
suggestions on this paper.

REFERENCES
[1] 2022. Confidential Containers Architecture Overview. https://github.com/

confidential-containers/documentation/blob/main/architecture.md.
[2] 2023. Release Notes for v0.8.0. https://github.com/confidential-containers/

confidential-containers/blob/main/releases/v0.8.0.md.
[3] 2023. Security policy for Confidential Containers on Azure Kubernetes Service.

https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-
containers-aks-security-policy.

[4] AMD. 2023. AMD SEV-TIO: Trusted I/O for Secure Encrypted Virtualiza-
tion. https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/sev-tio-whitepaper.pdf. White Paper (2023).

[5] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
689–703.

[6] Thanh Bui. 2015. Analysis of Docker Security. arXiv:1501.02967
[7] CCv0. 2016. Kata Containers. https://github.com/kata-containers/kata-

containers/commit/59d733f.
[8] Container Runtime Interface (CRI) CLI. 2019. https://github.com/kubernetes-

sigs/cri-tools/blob/master/docs/crictl.md.
[9] Constellation. 2022. https://www.edgeless.systems/products/constellation/.
[10] Confidential Containers. 2023. https://github.com/confidential-containers.
[11] Enclave Confidential Containers. 2023. https://github.com/confidential-

containers/enclave-cc.
[12] Kata Containers. 2023. https://katacontainers.io/.
[13] Gobikrishna Dhanuskodi, Sudeshna Guha, Vidhya Krishnan, Aruna Manjunatha,

Rob Nertney, Michael O’Connor, and Phil Rogers. 2023. Creating the First Confi-
dential GPUs. Commun. ACM 67, 1 (2023), 60–67.

[14] Christophe de Dinechin, David Gilbert, and James Bottomley. 2023. Attesta-
tion in confidential computing. https://www.redhat.com/en/blog/attestation-
confidential-computing.

[15] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining
Wang. 2017. ContainerLeaks: Emerging Security Threats of Information Leakages
in Container Clouds. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 237–248.

[16] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang. 2019.
Houdini’s Escape: Breaking the Resource Rein of Linux Control Groups. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’19). 1073–1086.

[17] Xing Gao, Benjamin Steenkamer, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. 2018. A Study on the Security Implications of
Information Leakages in Container Clouds. IEEE Transactions on Dependable and
Secure Computing 18, 1 (2018), 174–191.

[18] Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Network and Distributed System
Security (NDSS) Symposium, Vol. 3. San Diega, CA, 191–206.

[19] Aaron Grattafiori. 2016. NCC Group Whitepaper: Understanding and Hardening
Linux Containers.

[20] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. 2011. Process Im-
planting: A New Active Introspection Framework for Virtualization. In 2011 IEEE
30th International Symposium on Reliable Distributed Systems. 147–156.

[21] Udit Gupta. 2015. Comparison between security majors in virtual machine and
linux containers. arXiv:1507.07816

[22] Guerney D. H. Hunt, Ramachandra Pai, Michael V. Le, Hani Jamjoom, Sukadev
Bhattiprolu, Rick Boivie, Laurent Dufour, Brad Frey, Mohit Kapur, Kenneth A.
Goldman, Ryan Grimm, Janani Janakirman, John M. Ludden, Paul Mackerras,
Cathy May, Elaine R. Palmer, Bharata Bhasker Rao, Lawrence Roy, William A.
Starke, Jeff Stuecheli, Enriquillo Valdez, and Wendel Voigt. 2021. Confidential
computing for OpenPOWER. In Proceedings of the Sixteenth European Conference
on Computer Systems (EuroSys ’21). 294–310.

[23] IBM. 2022. Introducing IBM Secure Execution for Linux 1.3.0. https://
www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf. (2022).

[24] Intel. 2023. Intel TDX Module 1.0 Specification. https://cdrdv2.intel.com/v1/dl/
getContent/733568. (2023).

[25] Intel. 2023. Intel® TDX Connect Architecture Specification. https://
cdrdv2.intel.com/v1/dl/getContent/773614. (2023).

[26] Intel. 2023. Intel® Trust Domain Extensions. https://cdrdv2.intel.com/v1/dl/
getContent/690419. (2023).

[27] David Kaplan. 2017. Protecting VM Register State with Sev-es. White paper
(2017).

[28] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD Memory Encryption.
White paper (2016).

[29] Extend kubectl with plugins. 2021. https://kubernetes.io/docs/tasks/extend-
kubectl/kubectl-plugins/.

[30] Kubernetes kubelet documentation. 2023. https://kubernetes.io/docs/reference/
command-line-tools-reference/kubelet/.

[31] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,
and Qi Li. 2017. Speaker: Split-Phase Execution of Application Containers. In
Springer DIMVA.

[32] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and Verification of the Arm Confidential
Compute Architecture. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). 465–484.

[33] Xin Lin, Lingguang Lei, YuewuWang, Jiwu Jing, Kun Sun, andQuan Zhou. 2018. A
Measurement Study on Linux Container Security: Attacks and Countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC ’18). 418–429.

[34] Command line tool (kubectl). 2023. https://kubernetes.io/docs/reference/
kubectl/.

[35] Yang Luo, Wu Luo, Xiaoning Sun, Qingni Shen, Anbang Ruan, and Zhonghai
Wu. 2016. Whispers between the Containers: High-Capacity Covert Channel
Attacks in Docker. In IEEE Trustcom/BigDataSE/ISPA.

[36] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

[37] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. The Second Workshop on Hardware
and Architectural Support for Security and Privacy 10, 1 (2013).

[38] Pradipta Banerjee. December 2, 2021. Restricting Kata Agent API. https://
medium.com/kata-containers/restricting-kata-agent-api-e3dc88bf8270.

[39] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. GUITAR: Piecing Together Android app GUIs from Memory
Images. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 120–132.

[40] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. Vcr: App-agnostic Recovery of Photographic Evidence from
Android Device Memory Images. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. 146–157.

[41] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu. 2014.
DSCRETE: Automatic Rendering of Forensic Information from Memory Images
via Application Logic Reuse. In 23rd USENIX Security Symposium (USENIX Security
14). 255–269.

1403

https://github.com/confidential-containers/documentation/blob/main/architecture.md
https://github.com/confidential-containers/documentation/blob/main/architecture.md
https://github.com/confidential-containers/confidential-containers/blob/main/releases/v0.8.0.md
https://github.com/confidential-containers/confidential-containers/blob/main/releases/v0.8.0.md
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/sev-tio-whitepaper.pdf
https://arxiv.org/abs/1501.02967
https://github.com/kata-containers/kata-containers/commit/59d733f
https://github.com/kata-containers/kata-containers/commit/59d733f
https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md
https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md
https://www.edgeless.systems/products/constellation/
https://github.com/confidential-containers
https://github.com/confidential-containers/enclave-cc
https://github.com/confidential-containers/enclave-cc
https://katacontainers.io/
https://www.redhat.com/en/blog/attestation-confidential-computing
https://www.redhat.com/en/blog/attestation-confidential-computing
https://arxiv.org/abs/1507.07816
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://cdrdv2.intel.com/v1/dl/getContent/733568
https://cdrdv2.intel.com/v1/dl/getContent/733568
https://cdrdv2.intel.com/v1/dl/getContent/773614
https://cdrdv2.intel.com/v1/dl/getContent/773614
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://kubernetes.io/docs/tasks/extend-kubectl/kubectl-plugins/
https://kubernetes.io/docs/tasks/extend-kubectl/kubectl-plugins/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://medium.com/kata-containers/restricting-kata-agent-api-e3dc88bf8270
https://medium.com/kata-containers/restricting-kata-agent-api-e3dc88bf8270

Crossing Shifted Moats: Replacing Old Bridges with New Tunnels to Confidential Containers CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[42] AMD SEV-SNP. 2020. Strengthening VM Isolation with Integrity Protection and
More. White Paper (2020).

[43] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 955–970.

[44] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves.. In Network and Distributed
System Security (NDSS) Symposium.

[45] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. 2018. Security Namespace: Making Linux Security Frameworks
Available to Containers. In 27th USENIX Security Symposium (USENIX Security
18). 1423–1439.

[46] Tonic. 2022. A gRPC over HTTP/2 implementation focused on high performance,
interoperability, and flexibility. https://crates.io/crates/tonic.

[47] Agent Control tool. 2022. https://github.com/kata-containers/kata-containers/
tree/main/src/tools/agent-ctl.

[48] Trustee. 2023. Trusted Components for Attestation and Secret Management.
https://github.com/confidential-containers/trustee/tree/main/kbs.

[49] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). 645–658.

[50] Jietao Xiao, Nanzi Yang, Wenbo Shen, Jinku Li, Xin Guo, Zhiqiang Dong, Fei
Xie, and Jianfeng Ma. 2023. Attacks are Forwarded: Breaking the Isolation of
MicroVM-based Containers Through Operation Forwarding. In 32nd USENIX
Security Symposium (USENIX Security 23). 7517–7534.

[51] Yutian Yang, Wenbo Shen, Xun Xie, Kangjie Lu, Mingsen Wang, Tianyu Zhou,
Chenggang Qin, Wang Yu, and Kui Ren. 2022. Making Memory Account Ac-
countable: Analyzing and Detecting MemoryMissing-account bugs for Container
Platforms. In Proceedings of the 38th Annual Computer Security Applications Con-
ference. 869–880.

1404

https://crates.io/crates/tonic
 https://github.com/kata-containers/kata-containers/tree/main/src/tools/agent-ctl
 https://github.com/kata-containers/kata-containers/tree/main/src/tools/agent-ctl
https://github.com/confidential-containers/trustee/tree/main/kbs

	Abstract
	1 Introduction
	2 Background
	2.1 Containers Kata Containers
	2.2 Confidential Computing
	2.3 CoCo = Kata + Confidential Computing

	3 Security Implications of Shifted Trust Boundaries
	3.1 Information Leakage
	3.2 Execution Tampering

	4 Security Experiments
	4.1 Leaking Neighbor Container's Memory
	4.2 Obtaining Runtime Metrics Information
	4.3 Pausing/Resuming/Removing Containers
	4.4 Setting Bad Date and Time
	4.5 Writing Sensitive Files

	5 Defense Approach
	5.1 Design Principles
	5.2 System Architecture
	5.3 Implementation

	6 Defense Evaluation
	6.1 Security Assessment
	6.2 Performance Measurement

	7 Discussion
	7.1 Debugging
	7.2 Data Sharing
	7.3 I/O Operations
	7.4 Orchestration Interaction

	8 Related Work
	8.1 Protecting Containers with Confidential Computing
	8.2 Attacks/Defenses in Container Security

	9 Conclusion
	References

