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Intel Trust Domain Extensions (TDX) is an architectural extension in the 4th Generation Intel Xeon Scalable
Processor that supports confidential computing. TDX allows the deployment of virtual machines in the
Secure-Arbitration Mode (SEAM) with encrypted CPU state and memory, integrity protection, and remote
attestation. TDX aims at enforcing hardware-assisted isolation for virtual machines and minimize the
attack surface exposed to host platforms, which are considered to be untrustworthy or adversarial in the
confidential computing’s new threat model. TDX can be leveraged by regulated industries or sensitive data
holders to outsource their computations and data with end-to-end protection in public cloud infrastructures.
This article aims at providing a comprehensive understanding of TDX to potential adopters, domain

experts, and security researchers looking to leverage the technology for their own purposes. We adopt a
top-down approach, starting with high-level security principles and moving to low-level technical details
of TDX. Our analysis is based on publicly available documentation and source code, offering insights from
security researchers outside of Intel.
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1 INTRODUCTION

Deploying computations to cloud infrastructures can reduce costs, but regulated industries
have concerns about moving sensitive data to third-party cloud service providers. Confidential
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computing aims at providing end-to-end protection for outsourced computations by minimizing
the root-of-trust in the processors and their vendors. All data must be protected throughout its
life cycle, from leaving its owners’ premises to entering certified CPU packages in the cloud.
Adversaries, such as those intercepting data on the network, disk storage, or main memory,
should not be able to access the data in clear form.
Cryptographic mechanisms, such as storage encryption and secure communication channels,

protect the confidentiality, integrity, and authenticity of data both at rest and in transit. The emerg-
ing CPU-based Trusted Execution Environment (TEE) techniques aim at protecting data in use, i.e.,
data loaded into main memory.
Intel Trust Domain Extensions (TDX) is an architectural extension that provides TEE ca-

pabilities in the 4th Generation Intel Xeon Scalable Processors. TDX introduces the SEAM to
offer cryptographic isolation and protection for Virtual Machines (VMs), which are called Trust
Domains (TDs) in the TDX terminology. The threat model assumes that the privileged software,
such as hypervisor or host Operating System (OS), may be untrustworthy or adversarial. TDX
aims at protecting the confidentiality and integrity of CPU state and memory for designated TDs
and also enables TD owners to verify the authenticity of remote platforms. TDX is built using
a combination of techniques, including Virtualization Technology (VT) [64], Multi-key Total
Memory Encryption (MKTME) [31], and TDX Module [40]. TDX also relies on Software Guard
Extensions (SGX) [53] and Data Center Attestation Primitives (DCAP) [58] for remote attestation.
Throughout the article, we aim at giving an objective review of TDX. Our goal is to provide a

thorough understanding of TDX to potential adopters, domain experts, and security researchers
who want to leverage or investigate the technology for their own purposes. All the information is
based on publicly available documentation [26, 32, 39, 40, 42] and source code [27–29].
The following is a roadmap of this article. We begin by outlining the security principles

(Section 2) and the threat model (Section 3) of TDX. Next, we provide a comprehensive com-
parison of existing confidential computing technologies on the market (Section 4) and examine
the existing Intel technologies that serve as the building blocks for TDX (Section 5). Once the
background knowledge is established, we offer a high-level overview of TDX (Section 6) and then
delve into the technical details of the TDX Module (Section 7), memory protection mechanisms
(Section 8), and remote attestation (Section 9). Finally, we conclude with a summary (Section 10).
To assist readers in navigating the numerous terms and abbreviations used in this article, a list of
acronyms is also provided (Section A).

2 SECURITY PRINCIPLES

In cloud computing, multiple security domains, e.g., a hypervisor managed by a cloud service
provider and VMs owned by different tenants, coexist on a shared physical machine. While
hardware-assisted virtualization can isolate tenants’ workloads, the security model still relies
on a privileged hypervisor to provide trustworthy VM management. To address this issue, TDX
enforces cryptographic isolation among the security domains, thereby mitigating cross-domain
attacks. This eliminates hierarchical dependencies on untrusted/privileged host software and
excludes hypervisors and cloud operators from the Trusted Computing Base (TCB), allowing
tenants to securely provision and run their computations with confidence.
TDX guarantees confidentiality and integrity of TD’s memory and virtual CPU states, ensuring

that they cannot be accessed or tampered with by other security domains executing on the same
machine. This is achieved through a combination of (1) memory access control, (2) runtime
memory encryption, and (3) an Intel-signed TDX Module that handles security-sensitive TD
management operations.
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In addition, remote attestation provides tenants with proof of the authenticity of TDs executing
on genuine TDX-enabled Intel processors. These guarantees are based on a specific threat model
and require certain trust assumptions.

Memory Confidentiality. TD’s data residing inside the processor package are stored in clear
text. However, when the data is offloaded from the processor to the main memory, the processor
encrypts it using a TD-specific cryptographic key known only to the processor. The encryption
is performed at the cache line granularity, making it impossible for peripheral devices to read or
tamper with the TD’s private memory without detection. The processor can detect any tampering
that may occur when loading data from the main memory.

CPU State Confidentiality. TDX protects against concurrently executing processes bymanaging
the virtual CPU states of TDs during all context switches between security domains. The states are
stored in the TD’s metadata, which is protected while in main memory using the TD’s key. During
context switches, TDX clears or isolates the TD-specific states from internal processor registers
and buffers, such as Translation Lookaside Buffer (TLB) entries or branch prediction buffers, to
maintain the protection of the TD’s information.

Execution Integrity. TDX protects the integrity of TD’s execution from host interference, ensur-
ing that the TD resumes its computation after an interrupt at the expected instruction within the
expected states. It is capable of detecting malicious changes in the virtual CPU states, as well as
injection, modification, or removal of instructions located in the private memory. However, TDX
does not provide additional guarantees for the control flow integrity. It is the responsibility of the
TD owner to use existing compilation-based or hardware-assisted control flow integrity enforce-
ment techniques, such as Control Flow Enforcement Technology (CET) [25].

I/O Protection. Peripheral devices or accelerators are outside the trust boundaries of TDs and
should not be allowed to access TD’s private memory. To support virtualized I/O, a TD can choose
to explicitly share memory for data transfer purposes. However, TDX does not provide any
confidentiality and integrity protection for the data located in shared memory regions. It is the re-
sponsibility of TD owners to implement proper mechanisms, such as using secure communication
channels like Transport Layer Security (TLS), to protect the data that leaves the TD’s trust bound-
ary. In the future, TDX 2.0 is planned to include TDX Connect [35, 38] to address the trusted I/O
issue.

3 THREAT MODEL

TDX operates on the assumption that adversaries may have physical or remote access to a com-
puter and may be able to gain control over the boot firmware, System Management Mode (SMM),
host OS, hypervisor, and peripheral devices. The primary objective of these adversaries is to
obtain confidential data or interfere with the execution of a TD. It is important to note that TDX
cannot guarantee availability, as adversaries can control all the compute resources for TDs and
launch Denial of Service (DoS) attacks. It is crucial for the TDX design to prevent adversaries from
conducting actions that compromise the TDX security guarantees outlined in Section 2. Below,
we summarize the capabilities of adversaries and identify potential attack vectors and scenarios.
Adversaries can interact with the TDX Module through its host-side interface functions, which

allow them to build, initialize, measure, and tear down TDs. These interface functions can be in-
voked in an arbitrary order with semantically and syntax valid/invalid inputs.
Adversaries can control the compute resources assigned to TDs, including physical memory

pages, processor time, and physical/virtual devices. They can interrupt TDs at any point, and try
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to read and write to arbitrary memory locations, as well as reconfigure the Input/Output Memory
Management Unit (IOMMU).
Adversaries have the capability of manipulating the input data for TDs [30], including Advanced

Configuration and Power Interface (ACPI) tables, Peripheral Component Interconnect (PCI) config,
Model-Specific Register (MSR), Memory-Mapped Input/Output (MMIO), Direct Memory Access
(DMA), emulated devices, hypercalls handled by the host, source of randomness, and time notion.
Adversaries can conduct physical and hardware attacks, for instance, by probing buses or

accessing main memory through malicious DMA. There is no defense against physical attacks
that roll back arbitrary memory regions. However, it should not be possible for adversaries to
extract the secret key material baked into the processor chip’s fuses. The scope of the threat model
does not cover fault injections or side-channel attacks such as power glitches, time, and power
analysis.
Attacking TDX attestation is within the scope as it undermines the trust model and may enable

adversaries to forge a counterfeit TEE for collecting confidential information from tenants.

3.1 TCB

The TCB of TDX consists of the TDX-enabled Intel processors and the built-in technologies, such
as VT, MKTME, and SGX. The TCB also includes software modules signed by Intel, including the
TDXModule, the NP/P-SEAM Loaders, and architectural SGX enclaves for remote attestation. The
software stacks running within TDs are owned by the tenant and are considered part of the TCB.
The cryptographic primitives used in TDX are considered sound and their implementation secure,
including the generation of random numbers and the absence of side-channel attacks like timing
attacks.
Tenants must trust the processor manufacturer, Intel, for developing, manufacturing, building,

and signing the hardware/software components used by TDX. The source code packages for the
TDX Module, the NP/P-SEAM Loaders, and the DCAP for attestation are publicly available for
audit purposes, allowing tenants to assess their trustworthiness. However, tenants must also trust
that the version signed by Intel is equivalent to the one they have reviewed, which involves placing
trust in the compilation process to protect against supply chain attacks.
Moreover, tenants are required to trust Intel’s Provisioning Certification Service (PCS) for re-

mote attestation. The PCS, which originally supported SGX attestation, has been expanded to
include retrieval of Provisioning Certification Key (PCK) certificates, revocation lists, and TCB
information for TDX.

4 COMPARISON OF CONFIDENTIAL COMPUTING TECHNOLOGIES

Confidential computing technologies share a common objective of protecting outsourced sensi-
tive data and computations from unauthorized access, tampering, and disclosure on untrusted
third-party infrastructures. Major processor vendors are competing to incorporate confidential
computing capabilities into their chips. Despite differences in implementation and terminology,
these technologies share fundamental security principles with similar system designs, such as
introducing new execution modes or privilege levels, migrating VM management functions to at-
tested firmware/software, ensuring secure or measured launch of trusted components, enforcing
memory access control, and providing memory encryption protection.
In addition to Intel TDX, we provide a brief overview of the confidential computing technologies

from other vendors, including AMD Secure Encrypted Virtualization (SEV), IBM Secure Execution
and Protected Execution Facility (PEF), Arm Confidential Compute Architecture (CCA), and
RISC-V Confidential VM Extension (CoVE), for comparison purposes. We have summarized the
distinct features of these technologies in Table 1. Readers already familiar with these technologies
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Table 1. Summary of Comparable Confidential Computing Technologies

Technology Summary

AMD SEV

[3, 43, 44]

- enforces cryptographic VM isolation via AMD PSP

- supports memory encryption (SEV), CPU state encryption (SEV-ES), integrity protection (SEV-SNP)

- provides hardware isolated layers within VMs through VMPL

IBM Secure

Execution [24]

- protects SVMs on IBM Z and LinuxONE.

- leverages a trusted firmware, Ultravisor, to bootstrap and run SVMs

- provides end-to-end protection from the boot image to memory and throughout execution

IBM PEF [22]

- protects SVMs on Power ISA

- leverages the Protected Execution Ultravisor to manage SVM execution

- utilizes TPM, secure boot, and trusted boot for integrity check and bootstrap SVMs

Arm CCA [50]

- introduces Realm world for running confidential VMs

- introduces Root world to enforce address space isolation through GPT

- support attestation for Realm environment

RISC-V CoVE

[57]

- introduces the TSM to manage TVM life cycles

- uses MTT to track memory page assignment

- adopts a layered attestation architecture

can skip this section and proceed directly to Section 5, where we explain the existing Intel
technologies that support TDX.

4.1 AMD SEV

SEV [44] is a confidential computing feature in AMD EPYC processors. It protects sensitive
data stored within VMs from privileged software or administrators in a multi-tenant cloud
environment. SEV relies on AMD Secure Memory Encryption (SME) and AMD Virtualization
(AMD-V) to enforce cryptographic isolation between VMs and the hypervisor. Each VM is
assigned a unique ephemeral Advanced Encryption Standard (AES) key, which is used for runtime
memory encryption. The AES engine in the on-die memory controller encrypts or decrypts
data written to or read from the main memory. The per-VM keys are managed by the AMD
Platform Security Processor (PSP), which is a 32-bit Arm Cortex-A5 micro-controller integrated
within the AMD System-on-Chip (SoC). The C-bit (bit 47) in physical addresses determines
memory page encryption. SEV also provides a remote attestation mechanism that allows the
VM owners to verify the trustworthiness of VMs’ launch measurements and the SEV platforms.
The PSP generates the attestation report signed by an AMD-certified attestation key. The VM
owners can verify the authenticity of the attestation report and the embedded platform/guest
measurements.
AMD has released three generations of SEV. The first generation SEV [44] only protects the

confidentiality of a VM’s memory. The second generation SEV-ES (Encrypted State) [43] adds
protection for CPU register state during hypervisor transition, and the third generation SEV-SNP
(Secure Nested Paging) [3] adds integrity protection to prevent memory corrupting, replaying,
and remapping attacks. Particularly, SEV-SNP provides memory integrity protection using
Reverse Mapping Table (RMP). RMP tracks each page’s ownership and permissions to prevent
unauthorized access. SEV-SNP also introduces the Virtual Machine Privilege Level (VMPL)
feature by dividing the guest address space into four levels and providing additional security
isolation within a VM. The privilege levels range from zero to three, where VMPL0 is the
highest level of privilege and VMPL3 is the lowest. For instance, the Linux Secure VM Service
Module (SVSM) [61] makes extensive use of the RMP and VMPL features to perform sensitive
services, e.g., live migration and vTPM, in a secure manner.
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4.2 IBM Confidential Computing

IBM’s early exploration of confidential computing can be traced back to the research on Secure-
Blue++ [10, 70], which included running on an emulated POWER processor on the Mambo CPU
simulator [9]. Today, IBM Systems support two architectures for confidential computing: Secure
Execution [24], offered on IBM Z and LinuxONE, and PEF [22], released as an open source project
on OpenPOWER systems.

IBM Secure Execution. IBM Secure Execution provides support for Secure Virtual Ma-
chines (SVMs) that run inside isolated TEEs since IBM Z15 and LinuxONE III. Secure Execution
protects the confidentiality, integrity, and authenticity of code and data in an SVM from any
unauthorized access and snooping or tampering. Secure Execution leverages trusted firmware,
called the Ultravisor, to perform security-sensitive tasks to bootstrap and run SVMs. The
Ultravisor shields the SVM’s memory and its state during context switches and protects the
SVM from a potentially compromised or malicious hypervisor. Tenants using Secure Execution
can embed their encrypted sensitive data in the VM images and rely on the Ultravisor to decrypt
and expose them to the SVMs executing inside the TEEs. Specifically, tenants can encrypt their
confidential data with a symmetric data key, which they embed in the IBM Secure Execution
Header. They further encrypt this header with the key obtained from the verified Host Key
Document and embed the header in their VM image. The header can contain multiple key slots
that allow an image to run on multiple target hosts. The Host Key Document, signed by the
hardware manufacturer, contains the public key linked with the private key embedded in the
hardware of IBM Z or LinuxONE. Ultravisor, the only component having access to the hardware
private key and the data key, enforces that only the expected tenant’s SVM executing inside
the TEE has access to the unencrypted data. In addition to embedding built-in secrets within
the VM image, Secure Execution also supports remote attestation starting from IBM Z16 and
LinuxONE Emperor 4. This allows tenants to verify the SVM’s measurements before releasing
their secrets.

IBM PEF. PEF provides a VM-based TEE using extensions to the IBM Power Instruction Set
Architecture (ISA) that are supported in most POWER9 and POWER10 processors. PEF firmware,
tooling to prepare SVMs, and OS extensions, were released as open source software [23]. To
protect sensitive data and code, PEF introduces a trusted firmware called Protected Execution
Ultravisor (Ultravisor) that shields the SVM execution and enforces the security guarantees
with the help of the CPU architectural changes. The PEF relies on the secure and trusted boot of
the system and the Ultravisor executing in a new, highest privileged CPU state called Secure
State. The hypervisor starts the VM, which invokes the Ultravisor to transition to an SVM
using the Enter Secure Mode (ESM) call. The Ultravisor converts the VM into an SVM by
moving it to the secure memory that is inaccessible to untrusted code. Before executing the SVM,
the Ultravisor performs integrity checking. It decrypts the payload attached to the SVM image
to decode the integrity information and a passphrase for the encrypted file system. After ensuring
the integrity of the SVM, the Ultravisor exposes the passphrase to the SVM booting system
that decrypts the tenant’s file system. The Ultravisor uses the Trusted Platform Module (TPM)
to get access to the symmetric seed required to check integrity and decrypt the payload. The
symmetric seed is guarded using the Platform Configuration Register (PCR) sealing mechanism
and accessed by establishing a secure channel to the TPM. The TPM only grants access to an
Ultravisor on a correctly booted system. If the Ultravisor gets access to the symmetric seed,
it generates the HMAC key and symmetric key that are used to verify integrity and decrypt the
passphrase.
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4.3 Arm CCA

CCA [50] was introduced in the Armv9 architecture. Traditionally, Arm TrustZone allows secure
execution by having two separatedworlds, the NormalWorld and the SecureWorld. TrustZone
prevents software in the Normal World from accessing data in the Secure World. CCA intro-
duces the Realm Management Extension (RME) with two additional worlds, the Realm World
and the Root World. The Realm World provides mutually distrusting execution environments
for confidential VMs, isolating workloads from any other security domains, including host OS,
hypervisor, other Realms, and TrustZone. To enforce the isolation of address spaces, CCA uses a
Granule Protection Table (GPT), which is an extension to the page table that tracks the owner-
ship of each pagewith different worlds. TheMonitor in the RootWorld handles the creation and
management of the GPT, preventing a hypervisor or anOS from directly changing it. TheMonitor
can dynamically move physical memory between different worlds by updating the GPT. CCA also
supports attestation to measure and verify the CCA platform and the initial state of the Realms.

4.4 RISC-V CoVE

CoVE [57] is a reference confidential computing architecture for RISC-V. Its protected instance
is called a TEE Virtual Machine (TVM). The architecture introduces the TEE Security Man-
ager (TSM) driver, which is an M-mode (highest privilege level in RISC-V) firmware component
for switching between confidential and non-confidential environments. The TSM driver tracks
the assignment of memory pages to TVMs through the Memory Tracking Table (MTT). The
TSM driver measures and loads the TSM, which is a trusted intermediary between the hypervisor
and the TVMs. CoVE defines the Application Binary Interface (ABI) for the hypervisor to
request virtual machine management services from the TSM. CoVE adopts a layered attestation
architecture, which begins with the hardware and progresses through the TSM driver, TSM, and
TVM. Each layer is loaded, measured, and certified by the previous layer. This approach provides
a secure chain of trust that can be used to verify the integrity of the system. The TVM can obtain
a certificate from the TSM that contains attestation evidence rooted back to the hardware. This
certificate provides a mechanism for verifying the authenticity of the TVM and the software
it runs.

5 BUILDING BLOCKS FOR TDX

TDX relies on a combination of existing Intel technologies, including VT, Total Memory Encryp-
tion (TME)/MKTME, and SGX. In this section, we provide an overview of these underpinning
technologies and explain how they are used in TDX. A summary of these technologies can be
found in Table 2.

5.1 Intel VT

Intel VT [64] is a set of hardware-assisted virtualization features in Intel processors. Using VT,
Virtual Machine Monitors (VMMs) or hypervisors can achieve better performance, isolation, and
security compared to software-based virtualization. Intel’s VT portfolio includes, among others,
the virtualization of CPU, memory, and I/O.
Processors with VT-x technology have a special instruction set, called Virtual Machine Ex-

tensions (VMX), which enables control of virtualization. Processors with VT-x technology can
operate in two modes: VMX root mode and VMX non-root mode. The hypervisor runs in
VMX root mode while the guest VMs run in the VMX non-root mode. VT-x defines two
new transitions, VM entry and VM exit, to switch between the guest and the hypervisor. The
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Table 2. Summary of Existing Building Blocks for TDX

Technology Summary

Intel VT [64]
- provides hardware-assisted virtualization for CPU, memory, and I/O

- enforces isolation among VMs via a trusted hypervisor

Intel TME

- encrypts entire main memory

- uses a single and boot-time generated transient key

- uses the AES-XTS algorithm with 128-bit keys or 256-bit keys

Intel MKTME

[31]

- supports multiple keys for memory encryption

- enables memory encryption at the page granularity

Intel SGX [53]

- encloses sensitive code and data of an application within an enclave

- protects against memory bus snooping and cold boot attacks with memory encryption

- supports local and remote attestation

Virtual Machine Control Structure (VMCS) is a data structure that stores VM and host state
information for mode transitions. It also controls which guest operations can cause VM exits.
Intel VT-x utilizes Extended Page Table (EPT) for implementing Second Level Address

Translation (SLAT). Each guest kernel maintains its page table to translate Guest Virtual
Address (GVA) to Guest Physical Address (GPA). The hypervisor manages EPT to map GPA
to Host Physical Address (HPA).
VMs can use different I/O models, including software-based and hardware-based models, to

access I/O devices. Software-based I/O models involve emulated devices or para-virtualized
devices, while hardware-based I/O models include direct device assignment, Single Root I/O
virtualization (SR-IOV) devices, and Scalable I/O virtualization (S-IOV) devices.
Intel VT for Directed I/O (VT-d) enables the isolation and restriction of device accesses to entities

managing the device. It includes I/O device assignment, DMA remapping, interrupt remapping,
and interrupt posting. With the support of VT-d, VMs can directly access physical I/O memory
through virtual-to-physical address translation with the help of the IOMMU. VT-d also provides
flexibility in I/O device assignments to VMs and eliminates the need for the hypervisor to handle
interrupts and DMA transfers. Overall, VT-d enhances the performance and security of virtualized
environments that require direct access to I/O devices.

VT ⇒ TDX. TDX is a VM-based TEE. It relies on the VT to provide isolation among TDs. As
the hypervisor is no longer trusted in the new threat model, the functionalities of managing TDs
have been enclosed within the TDX Module. The TDX Module and TDs run in the new SEAM
VMX root/non-root mode with additional protection. TDX still leverages EPT to manage GPA-
to-HPA translation. But currently, it maintains two EPTs for each TD, a protected one for private
(encrypted) memory and another one for shared (unencrypted) memory. We provide a detailed
explanation of the TDX’s architecture and the TDX Module in Sections 6.1 and 7.
It is worth noting that currently nested virtualization is not supported in TDX 1.0, which means

that running VMs within a TD is not allowed. Attempting to use VMX instructions within a
TD can result in Undefined Instruction (UD) exceptions. But the TD partitioning architecture
specification draft [37] indicates that nested virtualization will be supported in TDX 1.5 in the
future.

5.2 Intel TME/MKTME

TME was first introduced with the Intel 11th Generation Core vPro mobile processor. This feature
is designed to protect against attackers who have physical access to a computer’s memory and at-
tempt to steal data. TME encrypts the entire computer’s memory using a single transient key. The
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key is generated at boot-time through a combination of hardware-based random number genera-
tors and security measures integrated into the system’s chipset. Memory encryption is performed
by encryption engines on each memory controller. The encryption process uses the NIST standard
AES-XTS algorithm with 128-bit or 256-bit keys.
MKTME [31] extends TME to support multiple keys and memory encryption at page granu-

larity. For each memory transaction, MKTME extracts Host Key Identifier (HKID) from the
physical memory address and selects a corresponding key to encrypt/decrypt memory. HKID
occupies a configurable number of bits from the top of the physical address. The HKIDs range is
set by the BIOS during system boot. MKTME allows for software-provided keys and introduces
a new instruction, PCONFIG , for programming the key and encryption mode associated with a

particular HKID. These 〈HKID,key〉 tuples are stored in the Key Encryption Table (KET), which

is held by each MKTME encryption engine. The keys in the KET never leave the processor and
are never exposed to software. MKTME can be used in both native and virtualized environments.
In the virtualized environments, hypervisors control the memory encryption for different VMs
by attaching HKIDs to VM’s physical addresses in EPT.

MKTME⇒TDX. To useMKTME in the virtualized environments, the hypervisor must be trusted
to control thememory encryption, which violates the new threatmodel for confidential computing.
Therefore, in TDX, the TDX Module is responsible for controlling memory encryption for TDs.
The HKID space has been partitioned to private HKIDs and shared HKIDs. The TDX Module
ensures that a unique private HKID is assigned to each TD. Therefore, this HKID can be used to
represent the identity of a specific TD. The private HKIDs can only be used for encrypting the
private memory of TDs. The TDX Module still leverages MKTME to protect TD’s memory. More
information about how TDX uses MKTME can be found in Sections 6.2 and 8.

5.3 Intel SGX

Intel introduced SGX [53] in 2015 with the 6th Generation Core processors to protect against mem-
ory bus snooping and cold boot attacks. It enables developers to partition their applications and
protect selected code and data within enclaves. The memory of an enclave can only be accessed by
authorized code. SGX uses hardware-based memory encryption to protect the enclave’s contents.
Any unauthorized attempts to access or tamper with the enclave’s memory can trigger exceptions.
SGX adds 18 new instructions into Intel’s ISA and enables secure offloading of computations to
environments where the underlying host components (such as host application, host kernel, SMM,
and peripheral devices) are untrustworthy. SGX’s security ultimately depends on the security of
the firmware and microcode that implement its features.
The Enclave Page Cache (EPC) is a special memory region that contains the enclave’s code

and data, where each page is encrypted using the Memory Encryption Engine (MEE). The En-
clave Page Cache Map (EPCM) stores the page metadata, such as configuration, permissions,
and type of each page. At boot time, keys are generated and used for decrypting the contents of
encrypted pages inside the CPU. The keys are controlled by the MEE and never exposed to the out-
side. Thus, only this particular CPU can decrypt the memory. The CPU stores these keys internally
and prevents access to them by any software. Additionally, privileged software out of enclaves is
not allowed to read or write the EPC or EPCM pages.
SGX offers both local and remote attestation to verify the integrity and authenticity of enclaves.

Local attestation is used to establish trust between two enclaves within the same platform, while
remote attestation verifies the trustworthiness of an enclave to a third-party entity off the plat-
form. In local attestation, an enclave can verify another enclave’s integrity and the genuineness
of the underlying hardware platform. To do so, the first enclave generates a report and uses the
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identity information of the second enclave to sign it. The second enclave retrieves its Report Key
and verifies the report using this Report Key. A third party may want to establish trust with a
remotely executed enclave before provisioning it with secrets. In this scenario, remote attestation
is necessary. To perform remote attestation, SGX utilizes a special architectural enclave known as
the Quoting Enclave (QE). The QE is developed and signed by Intel. The QE receives a report
from another enclave, locally verifies it, and transforms it into a remotely verifiable qote by
signing it with the Attestation Key. The relying party can send this qote to the Intel Attestation
Service (IAS), which verifies the qote to identify and assess the trustworthiness of the SGX en-
clave. The QE’s role is to provide a secure and trustworthy environment for the transformation of
a report into aqote and to ensure theqote cannot be modified or falsified. Intel also provides
DCAP [58], which is a composition of software packages, for data centers to deploy their own
ECDSA attestation infrastructures for SGX enclave attestation.
Researchers have used SGX to provide secure containers (e.g., Scone [4]) and shielded exe-

cution for unmodified applications (e.g., Haven [6]). Graphene [63], an SGX-based framework,
provides techniques for running unmodified applications as well as dynamic libraries inside SGX
enclaves. Besides, SGX has a wide spectrum of applications ranging from the function encryption
system (e.g., Iron [16]), source code partitioning to protect security-sensitive data and functions
(e.g., Glamdring [51]), machine learning [20, 21, 55, 62], network security [7], fault-tolerant [8],
encrypted data search (e.g., HardIDX [17]), secure databases (e.g., EnclaveDB [56]), secure co-
ordination for distributed system (e.g., SecureKeeper [12]), and secure distributed computations
(e.g., VC3 [59]).
Identifying vulnerabilities of SGX is another important line of research. Researchers also have

identified a wide range of attack vectors targeting SGX, such as controlled-channel attacks [66, 67,
69, 71], cache attacks [11, 18, 54, 60], branch prediction attacks [15, 49], and speculative execution
attacks [13, 48].

SGX ⇒ TDX. SGX and TDX protect memory at different granularities. But on the same platform,
TDX and SGX are within the same TCB. Thus, they can locally attest to each other. TDX leverages
the remote attestation mechanism provided by SGX. The attestation report of a TDX platform can
be verified and signed within a QE. More details about TDX’s remote attestation can be found in
Sections 6.4 and 9.
It is worth noting that at the moment, running an SGX enclave within a TD is not allowed, as

invoking ENCLS / ENCLV instructions within a TD can lead to UD exceptions.

6 OVERVIEW OF TDX

In this section, we give an overview of TDX, discussing its system architecture, memory protection
mechanisms, I/O model, attestation, and features that have been planned for the future. Each topic
also includes pointers to subsequent sections that provide more technical details.

6.1 TDX System Architecture

Figure 1 illustrates the runtime architecture of TDX. It is composed of two key components:
(1) TDX-enabled processors, which offer architectural functionalities like hardware-assisted
virtualization, memory encryption/integrity protection, and the ability to certify TEE platforms,
(2) TDX Module, an Intel-signed and CPU-attested software module that leverages the features of
TDX-enabled processors to facilitate the construction, execution, and termination of TDs while
enforcing the security guarantees. The TDX Module provides two sets of interface functions,
host-side interface functions for a TDX-enlightened hypervisor and guest-side interface functions
for TDs. It is loaded and executed in the SEAM Range, which is a portion of system memory
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Fig. 1. TDX system architecture.

reserved via UEFI/BIOS. The P-SEAM Loader, which also resides in the SEAM Range, can install
and update the TDX Module. More information on the loading process of the TDX Module can
be found in Section 7.1.
Secure-Arbitration Mode (SEAM) is an extension of the VMX architecture and provides

two new execution modes: SEAM VMX root mode and SEAM VMX non-root mode. A TDX-
enlightened hypervisor operates in the traditional VMX root mode and utilizes the SEAMCALL

instruction to call host-side interface functions (function names start with TDH ) of the TDX Mod-

ule. Upon execution of the SEAMCALL instruction, the logical processor (LP) transitions from the
VMX root mode into SEAM VMX root mode and starts executing code within the TDX Module.
Once the TDX Module has completed its task, it returns to the hypervisor in VMX root mode by
executing the SEAMRET instruction.
On the other hand, TDs run in the SEAMVMX non-root mode. TDX supports the execution of

unmodified user-level applications within a TD, much like in a standard VM. However, the guest
OS kernel, illustrated as the TDX-enlightened OS in Figure 1, must undergo modifications to align
with the underlying TDX platform, accommodating both the architectural paradigms and the
security imperatives of TDX. These modifications include managing new TDX exceptions via an
in-guest Virtualization Exception (VE) handler, implementing a hypercall-like mechanism for
communication between a TD and the TDX Module, transitioning memory pages from private
to shared for I/O operations, and integrating attestation support. The specific implementation
details may vary depending on the OS type. For instance, the detailed implementation of the
enlightened guest Linux kernel has been described in the kernel documentation [14]. TDs can trap
into the TDX Module either through a TD exit or by invoking the TDCALL instruction. In both
cases, the LP transitions from the SEAM VMX non-root mode into the SEAM VMX root mode
and starts executing in the context of the TDX Module. The names of guest-side interface func-
tions handling TDCALLs start with TDG . Details about the TDX context switches can be found in
Section 7.5.
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The confidentiality assurances offered by confidential computing render it a prime target for
research on side-channel information leakage. The unveiling of a succession of micro-architectural
attacks [5, 47, 52, 65, 68] exploiting the speculative execution of CPUs highlights a concerning
issue: the isolation of security domains enforced in the architectural states may not be consistent
as in the micro-architectural states. As TDX becomes more widely available in the market, it is
expected to attract increased attention from security researchers. Our primary emphasis lies in
examining the existing defenses integrated into the TDX Module to address known attack vectors.
For detailed information, please refer to Section 7.8.

6.2 TDX Memory Protection

TDX leverages VMX to enforce memory isolation for TDs. Similar to legacy VMs, TDs are unable
to access the memory of other security domains, such as SMM, hypervisors, the TDXModule, and
other VMs/TDs. With VMX, hypervisors maintain EPTs to enforce memory isolation. However,
since hypervisors are no longer trusted, TDX has moved the tasks of memory management to the
TDX Module, which controls the address translation of TD’s private memory.
A more intriguing aspect of TDX’s security model is its protection of TD’s memory from privi-

leged software, corrupted devices, and unprincipled administrators on the host. TDX achieves this
by implementing access control and cryptographic isolation. Access control prevents other security
domains on the same computer from accessing a TD’s data. Cryptographic isolation is utilized
to prevent malicious DMA devices or adversaries with physical access to the main memory from
directly reading or corrupting TD’s private memory.

Memory Partitioning.With TDX enabled, the entire physical memory space is partitioned into
two parts: normal memory and secure memory. The sensitive data of TDs, including the private
memory, virtual CPU state, and its associated metadata, should be stored in secure memory. TDs
can also specify memory regions as shared memory for I/O, which is not protected through TDX.
Thus, these memory regions belong to normal memory. All other software, which is not executing
in the SEAM mode, belongs to normal memory and is not allowed to access secure memory,
regardless of its privilege level. The memory controller, an architectural component inside the
processor, enforces memory access checks.
To make a physical page part of the secure memory, the TD Owner Bit is enabled (Section 8.2).

Each TD Owner Bit is associated with a memory segment corresponding to a cache line.1 The
TD Owner Bits are stored in the Error Correction Code (ECC) memory associated with these
segments. The TDXModule controls the conversion of physical memory pages to secure memory
by attaching private HKIDs to their physical addresses. The HKID is encoded in the upper bits of
the physical address. The set of private HKIDs is controlled by TDX and can only be used for TDs
and the TDX Module. When the memory controller writes to a physical address with a private
HKID, it sets the TD Owner Bit to 1. When it writes to an address that does not have a private
HKID, it clears the TD Owner Bit. Access control is enforced on each cache line read. The read
request passes through the memory controller, which permits only processes executing in SEAM
mode to read a cache line with a TD Owner Bit set to 1. Any read request not in the SEAM mode
receives all zeros when trying to read such a cache line.
When building a TD, the (untrusted) hypervisor selects the memory pages from the normal

memory to become part of the secure memory. The TDX Module gradually moves these pages to
the secure memory. It uses them for the metadata (Section 7.4) and the main memory of each TD.
A TD must explicitly accept these pages before they can be used for its main memory. The TDX

1At the time of this writing, the size of the processor’s cache line is 64 bytes; thus the address of such a memory segment

is 64 B-aligned.
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Module performs sanity checks of the secure memory setup by maintaining a Physical Address
Metadata Table (PAMT), which is described in more detail in Section 7.7.

Memory Confidentiality. TDX leveragesMKTME (Section 5.2) for encrypting TD’s privatemem-
ory and its metadata. MKTME is responsible for transparent memory encryption and decryption
of data passing through the memory controller. The TDX Module programs the keys used by the
MKTME to encrypt specific cache lines when they are written to memory. The keys are associ-
ated with the HKIDs embedded in the physical addresses. MKTME decodes HKIDs and uses the
referenced cryptographic keys to perform the cryptographic operations.
MKTME stores cryptographic keys in its internal memory, never exposing them to the outside.

The cryptographic keys can only be referenced by their HKIDs. When building a new TD, the hy-
pervisor selects an unused private HKID, and the TDXModule requests the processor to generate

a new cryptographic key related to this HKID. The TDX Module binds this 〈HKID,key〉 tuple to

the TD. It guarantees that the memory of each TD is encrypted with a different cryptographic key.
MKTME encrypts memory at the cache line granularity using AES-128 XTS cryptography when

the cache line is being written back to main memory. The encryption can prevent some physical
attacks, like the cold boot attack. Please see Section 8.1 for more details on MKTME and HKIDs.

Memory Integrity. TDX provides two distinct mechanisms for ensuring memory integrity: Log-
ical Integrity (Li) and Cryptographic Integrity (Ci).
Li protects the integrity against unauthorized writes at the software level by using the TD

Owner Bit. Since the TDX only allows the use of private HKIDs in the SEAM mode, any unau-
thorized writes to a TD’s private memory from outside the SEAM mode will clear the TD Owner
Bit. When the modified private memory is read, the cleared TD Owner Bit will trigger an excep-
tion. However, this feature cannot prevent adversaries from bit flipping (e.g., via a Rowhammer
attack [45]) the main memory.
Ci is a more advanced mechanism that addresses the limitations of Li. In addition to the TD

Owner Bit, Ci also computes a Message Authentication Code (MAC) on a cache line when it is
being written back to memory. The MAC is computed using a 128-bit MAC key generated during
system initialization and is stored as part of the memory metadata during the write-back. When
the memory is read, the MAC is recalculated. Any tampering with the memory content will be
detected by Ci if the TD Owner Bit or the recalculated MAC mismatch with the stored metadata.
However, neither Li nor Ci can detect the memory replay attack if the adversary can roll back
both the memory content and the metadata. We provide a more detailed technical discussion of
the memory integrity protection in Section 8.2.

6.3 TDX I/O Model

According to the TDX threat model, hypervisors and peripheral devices are considered untrusted
and are prohibited from directly accessing the private memory of TDs. It is the responsibility of
TDs and their owners to secure I/O data before it leaves the trust boundary. This requires sealing
the I/O data buffers and placing them in sharedmemory, which is identified by the shared bit in the
GPA. Hypervisors or peripheral devices can then move the data in and out of the shared memory.
This necessitates modifications to the guest kernel to support this I/O model. Furthermore, all I/O
data that is transferred into the TDs from hypervisors or peripheral devices must be thoroughly
examined and validated, as it is no longer considered trustworthy.
In the Linux guest support for TDX, all MMIO regions and DMA buffers have been mapped

as shared memory within the TDs. The Linux guest is enforced to use SWIOTLB to allocate and
convert DMA buffers in unified locations. To protect against malicious inputs from I/O, only a
limited number of hardened drivers [30] are allowed within TDs.

ACM Comput. Surv., Vol. 56, No. 9, Article 238. Publication date: April 2024.



238:14 P.-C. Cheng et al.

6.4 TDX Attestation

Remote attestation is a method for verifying the identity and trustworthiness of a TEE. The attester
can provide proof to a challenger to show that computations are being executed within protected
domains. The challenger validates the evidence by checking the digital signatures and comparing
the measurements to reference values.
On a TDX-enabled machine, the attester operates within a TD and is responsible for handling

remote attestation requests. When a request is received from a challenger, such as a tenant, the
attester provides evidence of proper instantiation of the TD through the generation of a TDqote.
This qote, which serves as the evidence, is produced by the TDX module and signed by the
Quoting Enclave. It contains measurements of the TDX’s TCB and the software components
loaded in the TD. The qote also includes a certificate chain anchored by a certificate issued by
Intel. Upon receipt of theqote, the challenger verifies its authenticity by checking theqote and
determining if the attester is running on a genuine TDX-enabled platform and if the TD has the
expected softwaremeasurements. If theqote is successfully validated, the challenger can proceed
to establish a secure channel with the attester or release secrets to the attester. We provide a more
detailed technical discussion of remote attestation in Section 9.

6.5 Future Features

Live migration and trusted I/O are crucial features for confidential VMs but are currently not sup-
ported in TDX 1.0. However, according to documents [35, 36, 38], Intel is planning to include the
support for live migration in TDX 1.5 and trusted I/O in TDX 2.0. These plans are still in progress
and may be subject to change in the future. Here we provide a brief overview of these two features
and explain their design.

Live Migration. Live migration is an essential feature for cloud service providers as it enables
them to transfer running VMs from one physical host to another without any service interruptions.
This functionality is important formaintenance tasks such as hardware upgrades, software patches,
and load balancing. However, migrating a TD is more complex thanmigrating a traditional VM due
to the security concerns of confidential computing. Since the hypervisor is considered untrusted,
it is not allowed to directly access and transfer the CPU state and private memory of the TD
from the source to the destination platform. Furthermore, tenants should have the ability to define
and enforce migration policies. For instance, if the destination platform does not meet the TCB
requirements specified in the policy, the migration should be canceled.
Intel introduces Service TDs to expand the trust boundary of the TDX Module. Rather than

making the TDX Module overly complex and bloated, it is more convenient and flexible to add
customized and specialized functionalities into a Service TD. A Service TD can be bound to regular
TDs via the TDX Module with access privileges to their assets.
Migration TD (MigTD) is a Service TD that is specifically designed for live migration. The en-

tire live migration session is under the control of the TDXModule and the MigTDs. The untrusted
hypervisor, which is controlled by the cloud service provider, is only responsible for transferring
the encrypted TD’s assets over networks. These assets include the TD’s metadata, CPU state, and
private memory, and are protected by a Migration Session Key (MSK) that is only accessible by
the MigTDs and TDX Module.
Both the source and destination platforms have a running MigTD. MigTDs are respectively

bound to the source TD (to be migrated) and the destination TD (initially as a TD template waiting
for migration). The MigTDs are responsible for remote attestation between source and destination
platforms and evaluate their TCB levels based on security policies. Once the platforms are deemed
acceptable for migration, a secure channel is established between the two MigTDs. The source
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Fig. 2. Loading the TDX module.

MigTD generates an MSK, which is shared to the destination MigTD through this secure channel.
Both MigTDs program the MSK into the corresponding TDX Modules. The source TDX Module
exports and encrypts the TD’s assets with the MSK, while the destination TDX Module decrypts
the assets with the same key and imports them into the destination TD. It is worth noting that
the source and destination TDs have their HKIDs assigned independently, thus protected with
different TD private keys.

Trusted I/O. A computer consists of various functional components. However, confidential com-
puting has conceptually shattered the unified trust model. As a result, each component, made by
different vendors, can no longer trust each other. This creates a serious impediment to efficient
I/O, as untrusted devices cannot read and write data in the private memory of TEEs. To address
this issue, Intel has proposed TDX Connect in TDX 2.0, aiming to extend the trust from a TD to
external devices. This requires changes to the devices and the TDX platform to use a compatible
protocol to establish mutual trust and enable secure communication channels. The key principle
is that a TD and a device should be able to securely exchange and verify their identities and mea-
surements. Additionally, the data paths between a TD and a device are not trusted and may be
vulnerable to interception by attackers. Therefore, an end-to-end secure channel is necessary to
protect the data transmitted between a TD and a device. The detailed protocols for TDX Connect
can be found in the proposals [35, 38].

7 TDX MODULE

This section provides an in-depth analysis of the TDX Module. We first discuss its loading process
in Section 7.1, followed by an explanation of the physical and linear memory layout in Section 7.2.
We then describe the metadata created by the TDX Module to manage TDs in Section 7.4, and
the process of context switching across security domains in Section 7.5. Additionally, we provide
details about the Keyhole structure (Section 7.6) and memory management (Section 7.7) of the
TDX Module.

7.1 Loading TDX Module

Figure 2 illustrates the two-stage process of loading the TDXModule. The process begins with the
loading of the Intel Non-Persistent SEAM Loader (NP-SEAM Loader), which is an Intel Authenti-
cated CodeModule (ACM). ACMs are Intel-signedmodules that runwithin the internal RAMof the
processor. The NP-SEAM Loader is authenticated and loaded by the Intel Trusted Execution Tech-
nology (TXT) [19] through the GETSEC[ENTERACCS] function. The NP-SEAM Loader contains the
image of the Intel Persistent SEAM (P-SEAM) Loader, which is then verified and loaded by the NP-
SEAM Loader. The P-SEAM Loader is then responsible for installing or updating the TDX Module.
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It is important to note that both the P-SEAM Loader and the TDX Module are loaded in the
SEAM Range, which is a portion of system memory reserved via UEFI/BIOS. The range’s base
address and size are specified by the IA32_SEAMRR_PHYS_BASE and IA32_SEAMRR_PHYS_MASK MSRs.
This range is partitioned intoModule_Range for the TDXModule and P_Seamldr_Range for the
P-SEAM Loader. Both modules run in the SEAM VMX root mode and use SEAMCALL / SEAMRET
to interact with external software. The NP-SEAM Loader, P-SEAM Loader, and TDX Mod-
ule are all provided and signed by Intel, establishing a chain of trust to bootstrap the TDX
Module.
The P-SEAM Loader provides a SEAMCALL interface function seamldr_install for loading the

TDX Module. The TDX Module’s image is pre-loaded into a memory buffer (not in the SEAM
Range). The physical addresses of the buffer and a seam_sigstruct (signature of the TDXModule)

are passed as the parameters to the seamldr_install . The seam_sigstruct contains the hash

value and the Security Version Number (SVN) of the TDX Module, the number of per-LP stack
pages, the number of per-Logical Processor (LP) data pages, and the number of global data pages.
These numbers are used by seamldr_install to determine the physical/linear addresses and the
sizes of the TDX Module’s various memory regions.
The seamldr_install must be called on all LPs serially. When it is called on the first LP, an

installation session starts. On each LP, seamldr_install checks that the LP is not already in an in-

stallation session (started by another LP), and clears the LP’s VMCS cache.When seamldr_install

is called on the last LP, it does the following:

(1) checking the parameters to the seamldr_install ,
(2) verifying the signature of the TDX Module,
(3) checking the SVN of the to-be-loaded image and comparing with the resident TDX
Module,

(4) determining the physical and linear addresses and sizes of the TDX Module’s various mem-
ory regions in the SEAM Range: code, data, stack, page table, Sysinfo_Table, Keyhole,
and Keyhole-Edit (Section 7.2),

(5) mapping the regions’ physical addresses to their linear addresses (Section 7.2),
(6) loading the TDX Module’s binary image into the SEAM Range, measuring the image,
computing and verifying the TDX Module’s hash value,

(7) setting up the TDX Module’s Sysinfo_Table,
(8) setting up SEAM Transfer VMCS on each LP (Section 7.5),
(9) recording the TDX Module’s hash, SVN, in the P-SEAM Loader’s data region.

In addition to the SEAMCALL to install the TDX Module, the P-SEAM Loader also provides other
interface functions to shut down itself and retrieve the loader’s system information.

7.2 Memory Layout of TDX Module

Here we discuss the physical and linear memory layout for the TDX Module, respectively.

Physical Memory Layout. Figure 3 depicts the physical memory layout of the TDX Module
within the Module_Range. The layout starts with a 4 KB page that holds the Sysinfo_Table of
the TDXModule. The Sysinfo_Table consists of 2 KB platform information populated byMcheck
from the NP-SEAM Loader and the next 2 KB populated by the P-SEAM Loader with the TDX
Module’s information, such as the SEAM Range base address and size, the base linear addresses
of the memory regions, number of LPs, and range of private HKIDs. After the Sysinfo_Table,
there is the per-LP VMCS region. Each LP has a 4 KB SEAM Transfer VMCS (see Section 7.5).
Following the per-LP VMCS region, there is the data region, which is partitioned into per-LP
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Fig. 3. TDX module physical memory layout.

Fig. 4. TDX module linear memory layout.

data region and a global data region. Next, there is the TDX Module’s 4-level page table, followed
by the per-LP stack regions, and finally, the code region for the TDX Module’s executable
code.

Linear Memory Layout. The TDXModule has its own linear address space and maintains a page
table to translate addresses. Figure 4 illustrates the layout of the TDXModule’s linear address space,
which is established by the P-SEAM Loader through the construction of the TDX Module’s page
table. To prevent memory corruption attacks, the P-SEAM Loader randomizes bits 34 to 46 of the
linear addresses, which are represented by the boxes in Figure 4. The linear addresses and the sizes
of all regions are recorded in the fields of the Sysinfo_Table. The Page Table Entries (PTEs) for
code, stack, data, and Sysinfo_Table can be statically populated in advance and require no changes
to the page table at runtime. However, the Keyhole region serves to map data passed from external
software dynamically during the execution of the TDX Module. This requires the addition of the
Keyhole-Edit region to allow runtime editing of the PTEs for the Keyhole’s mapping. A detailed
discussion of the Keyhole and Keyhole-Edit regions can be found in Section 7.6.

7.3 Initialization and Configuration of TDX Module

After the TDX Module is loaded, the host kernel is responsible for initializing and configuring
the TDX Module. The host kernel makes a SEAMCALL[TDH.SYS.INIT] to globally initialize the

TDX Module. Then, the host kernel makes a SEAMCALL[TDH.SYS.LP.INIT] on each LP to check
and initialize per-LP parameters, such as Keyholes (Section 7.6), data regions, and stack regions
(Section 7.2). Next, the host kernel allocates a global private HKID and passes it to the TDX
Module through a SEAMCALL[TDH.SYS.CONFIG] , which also initializes the Trust Domain Memory

Region (TDMR) (Section 7.7). The SEAMCALL[TDH.SYS.KEY.CONFIG] on each processor package
generates a TDX global private key and binds the key with this HKID. This key is used to encrypt
memory that holds PAMT and Trust Domain Root (TDR) (Section 7.4) of each TD. Finally, the
host kernel calls SEAMCALL[TDH.SYS.TDMR.INIT] multiple times to gradually initialize the PAMT
(Section 7.7) for each TDMR.
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Fig. 5. Relationship of TD’s metadata.

7.4 Metadata for TDs

The TDX Module is responsible for managing the entire life cycle of TDs. As such, it needs to
maintain metadata for each TD instance. The TDX Module ensures that the memory encryption
is applied to the metadata to prevent the hypervisor from accessing or modifying it.
Each TD’s metadata consists of the following control structures: TDR, Trust Domain Control

Structure (TDCS), Trust Domain Virtual Processor State (TDVPS), and Secure EPT (SEPT).
Figure 5 illustrates the relationships between these control structures.

TDR. TDR is the initial structure that is created at the inception of a TD and is destroyed when
the TD is terminated. During the entire life cycle of the TD, SEAMCALLs use the physical address
of the corresponding TDR to refer to the TD. The TDR comprises the key information for memory
encryption and references to the TDCX pages (physical memory pages for the TDCS). As the TDR
is created before the TD’s private key is generated, it is protected with the global private key of the
TDX Module. The subsequent metadata (TDCS, TDVPS, and SEPT), along with the TD’s memory
pages, can be associated with the TDR through the owner attribute in the PAMT (Section 7.7).

TDCS. TDCS is a control structure that manages the operations and stores the state at the scope
of a TD. It consists of four continuous TDCX memory pages, each allocated for a specific purpose,
such as TD’s management structures, MSR bitmaps, SEPT root page, and a special zero page. TDCS
is encrypted with the TD’s private key, which is generated when the TDR is created.

TDVPS. TDVPS is a control structure for each virtual CPU of a TD. It consists of six memory
pages, starting from a TDVPR page that contains references to multiple TDVPX pages. The first
TDVPR page holds the fields for VE information, virtual CPU management, guest state, and guest
MSR state. The second page is for the TD Transfer VMCS (Section 7.5), which controls the TD’s
entry and exit. The third page is a Virtual APIC (VAPIC) page, followed by three pages for guest
extension information. Like the TDCS, the TDVPS is also protected by the TD’s private key.

SEPT. For legacy VMs, hypervisors manage address translations from GPA to HPA using EPT.
However, in TDX, guest address translations must be protected from untrusted hypervisors. To
achieve this, TDX has two types of EPT: SEPT and Shared EPT. SEPT is used to translate ad-
dresses of a TD’s private memory and is protected by the TD’s private key. The reference to the
SEPT and the SEPT root page are stored in the TDCS. Shared EPT, on the other hand, is used to
translate addresses for memory explicitly shared by the TD with a hypervisor, such as in the case
of virtualized I/O. It remains under the control of the hypervisor. The guest kernel in the TD can
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Fig. 6. Per-LP SEAM transfer VMCS layout.

determine which memory pages to share by setting the shared bit in the GPA. Shared memory
pages are not encrypted with the TD’s private key.

7.5 Context Switches

There are two types of context switches for TDX: the first occurs between the hypervisor and the
TDX Module, while the second occurs between TDs and the TDX Module. We delve into each of
these in more detail.

Hypervisor ↔ TDX Module. In TDX, a hypervisor is prohibited from directly managing TDs.
Instead, it must interact with the TDX Module through SEAMCALL interface functions. When a

SEAMCALL is made, the processor transitions from the VMX root mode to the SEAM VMX root
mode. The TDX Module’s SEAM Transfer VMCS is loaded. This SEAM Transfer VMCS is set
up by the P-SEAM Loader for each LP and is stored within the Module_Range.
The repurposing of VMCS for context switches between the hypervisor and the TDX Module

may seem confusing initially, as the hypervisor is not a “guest VM” and the TDX Module is not
a “host hypervisor.” We can disregard the guest/host concept and only view the SEAM Transfer
VMCS as a means of switching the execution context between the hypervisor and the TDX
Module.
Figure 6 depicts the location and layout of the SEAM Transfer VMCS regions in the Mod-

ule_Range, which begins at the SEAMRR_Base . The first 4 KB page in the Module_Range is the

Sysinfo_Table. Starting from SEAMRR_Base + 4 KB , there is an array of per-LP SEAM Transfer
VMCS regions. Each region is a 4 KB page. This array is indexed by the identifier of the LP, denoted
by LP_ID .

When a SEAMCALL instruction is executed, the processor searches for the VMCS address based

on the current LP_ID . The address is determined by: SEAMRR_Base + 4 KB + (LP_ID × 4 KB) . The

TDX Module’s state is stored in the Host State Area of the VMCS. For instance, the host RIP is

set to the tdx_seamcall_entry_point of the TDX Module, and the host CR3 is set to the physical

address of the TDX Module’s PML4 base. Moreover, the host FS_BASE is set to the linear address

of the Sysinfo_Table and the host GS_BASE is set to the per-LP data region.

When the LP transitions into the TDX Module through the SEAMCALL instruction, the informa-

tion stored in the SEAM Transfer VMCS is loaded onto the processor. Therefore, the FS_BASE
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and GS_BASE now point to the Sysinfo_Table and the local data region of the TDX Module,

respectively. The CR3 register points to the TDXModule’s page table, thereby switching Memory
Management Unit (MMU) to operate in the TDX Module’s linear address space. The TDX Module
starts to handle SEAMCALLs and dispatch them to corresponding interface functions.

TD ↔ TDX Module. In traditional virtualization, the hypervisor handles VM exits, which are
controlled by the VM’s Transfer VMCS. Each VMCS is associated with one virtual CPU and
stores the virtual CPU state for recovering the guest execution in the next VM resume. However,
this operation leaks the virtual CPU state as VMCS is visible to hypervisors. In TDX, synchronous
TDCALLs or asynchronous TD exits are designed to trap into the TDX Module. This is controlled
by the TD Transfer VMCS, which is set up when a virtual CPU of a TD is created and stored
in the TD’s TDVPS. The TDVPS is encrypted with the TD’s private key (Section 7.4). Therefore,
the TD Transfer VMCS is inaccessible to untrusted hypervisors. When a TD calls a TDCALL or
triggers a TD exit, the LP loads the state of the TDX Module stored in the TD Transfer VMCS
to switch context.
In TDX, certain TD exits cannot be fully handled by the TDX Module and instead require a

hypervisor to emulate certain operations, such as port I/O, HLT, CPUID, and more. However,
traditional hypervisors have access to the entire virtual CPU states and memory, exposing more
information than necessary to handle these exits. TDX addresses this issue by introducing a new
mechanism for handling TD exits. All TD exits first trap into the TDX Module, which injects a
VE into the TD to handle the exit. The TD’s guest kernel includes a corresponding VE handler
that prepares a minimized set of parameters and invokes a TDCALL to re-enter the TDX Module.
At this point, the TDX Module can safely ask the hypervisor to handle the requests with minimal
exposure to sensitive information.

7.6 Keyholes

All memory buffers passed through SEAMCALLs use their physical addresses as references. The
TDXModulemustmap these buffers into its own linear address space to access them. Thismapping
process is facilitated by the Keyhole and Keyhole-Edit regions, which serve as temporary “leases”
of linear addresses.
The Keyhole region is a reserved linear address range specifically for address mapping. The

region is comprised of an array of Keyholes. This array is further divided into 128-Keyhole seg-
ments, with each segment assigned to one LP. The TDX Module organizes free Keyholes in an
LRU list when setting up per-LP data structures. Each Keyhole corresponds to a 4 KB-aligned lin-
ear address and links to a physical memory page. Since multiple memory buffers can exist within
the same memory page, each Keyhole maintains a reference count to track the number of ref-
erenced buffers on the page.
When the TDX Module is installed by the P-SEAM Loader, all the linear addresses of Keyholes

are mapped to an empty physical address. This is achieved by setting all the leaf-level PTEs for the
Keyhole region in the TDXModule’s page table to zero. Simultaneously, the physical addresses of
the corresponding PTEs for the Keyholes are mapped to the Keyhole-Edit region. This enables
the TDX Module to locate and modify the Keyhole’s address mappings in its page table during
runtime.
When processing a SEAMCALL that refers to an external memory buffer with a physical address,

the TDXModule checks if the buffer’s memory page is alreadymapped by a Keyhole. If so, it incre-
ments the Keyhole’s reference count and returns the mapped linear address. If not, it selects a
free Keyhole from the LRU list andmaps the linear address of this Keyhole to the page table by up-
dating the corresponding PTE referenced in the Keyhole-Edit region. Once the buffer is mapped,
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the TDX Module can access it using the Keyhole’s linear address. At the end of each SEAMCALL ,
the reference counts of corresponding Keyholes decrement, and any non-referenced Keyholes
return to the LRU list.

7.7 Physical Memory Management

The TDX Module manages physical memory by using a set ofTDMRs and their control struc-
tures, PAMTs. TDMRs are constructed by the hypervisor based on a list of Convertible Memory
Regions (CMRs), which are the memory regions that can be used for TD’s private memory or
metadata. These regions are subject to MKTME encryption and TDXmemory integrity protection.
This list of CMRs is prepared by the UEFI/BIOS.
Each TDMR is a single range of physical memory that is 1 GB-aligned and has a size that is

an integral multiple of 1 GB, but does not necessarily need to be a power of two. Two TDMRs
cannot overlap. A TDMRmay contain reserved areas that cannot be used by the TDXModule. A
reserved area is an array of 4 KB-aligned memory pages (each page is 4 KB). Memory in a TDMR,
except for the reserved areas, must be convertible. It should be noted that TDMR configuration
is managed by software without using hardware range registers.
The TDXModule uses PAMT to track page attributes of each physical memory page in a TDMR.

The attributes contain the information about the page owner, page type, and page size. The page
attributes allow the TDX Module to ensure that a physical memory page in a TDMR has a proper
type and is only assigned to at most one TD. When a page is assigned to a TD’s private memory,
the TDX Module can check whether the page size in the SEPT and PAMT are consistent.
A PAMT is divided into blocks, where each block tracks page addresses within the 1GB size

range. Each block has three levels to track metadata for pages with sizes 4 KB, 2MB, and 1GB,
respectively. The first level tracks a single 1GB page, the second level tracks 512 2MB pages, and
the third level tracks 512×512 4 KB pages. Given a physical address, the TDXModule can perform
a PAMT hierarchical walk to retrieve its page attributes for a sanity check.
The TDX Module manages the data structure by updating the attributes of each page it uses

during runtime. Any operation that requires accessing, removing, or adding a page causes the TDX
Module to walk through PAMT to adjust the page attributes and check corresponding access rights.
The memory for PAMT is allocated by the hypervisor and is encrypted with the TDX Module’s
global private key.

7.8 Side Channel Mitigation

Some of the known CPU vulnerabilities have been addressed in hardware fixes. During the
initialization of the TDX Module, it reads the IA32_ARCH_CAPABILITIES MSR and verifies a

set of capability bits, including rdcl_no , irbs_all , mds_no , if_pschange_mc_no , taa_no ,

misc_package_ctls , skip_l1dfl_vmentry , energy_filtering_ctl , and tsx_ctrl . Each bit

corresponds to a specific vulnerability and indicates whether the processor is susceptible to that
particular attack. For example, rdcl_no indicates that the processor has been patched against
the Rogue Data Cache Load (RDCL) [2] vulnerability. The detailed list can be found in Intel’s
documentation [34]. Any missing capability will lead to the failure of initializing the TDXModule.
Furthermore, to counteract the Bounds Check Bypass (BCB) [1] vulnerability, a software-level

mitigation strategy is deployed, employing memory barriers such as LFENCE to halt speculation
at specific locations within the TDX Module where untrusted inputs might be encountered. These
critical locations comprise the TD exit entry point, SEAMCALL entry point, Keyhole manager,
among others. However, this approach remains manual and ad-hoc in nature. A more principled
approach is needed to determine the essential placement of memory barriers.

ACM Comput. Surv., Vol. 56, No. 9, Article 238. Publication date: April 2024.



238:22 P.-C. Cheng et al.

Fig. 7. HKID layout in physical memory address.

8 MEMORY PROTECTION

ATD’smemory is divided into private memory and sharedmemory. The private memory is only
accessible by the TD and the TDXModule. The sharedmemory is also accessible by the hypervisor
and is used for operations that require cooperation from the hypervisor, such as networking, I/O,
and DMA. TDX protects the confidentiality and integrity of a TD’s private memory.

8.1 HKID Space Partitioning

The HKID space is partitioned once during the boot process into two ranges, private HKIDs and
shared HKIDs. Only software in the SEAM mode, namely the TDX Module and TDs, can read
and write memory whose contents are encrypted by keys associated with private HKIDs. Keys
associated with shared HKIDs can be used to encrypt memory outside the SEAM mode, such as
the memory of legacy VMs and the host kernel.
When the hypervisor requests the TDX Module to establish a TD, it allocates a private HKID

for the TD. The TDX Module, using the PCONFIG instruction, asks MKTME to generate a unique
random key for the HKID. This key is called the TD’s ephemeral private key. It is used to en-
crypt all the private memory and metadata of the TD and is never exposed outside MKTME. This

〈HKID,key〉 binding is valid for the lifetime of the TD.

A physical memory page associated with a HKID stores the HKID in the upper bits of the
page’s physical address, as shown in Figure 7. At boot time, the number of bits used for HKIDs
( MK_TME_KEYID_BITS ) and the number of bits used for private HKIDs ( TDX_RESERVED_KEYID_BITS )

are set in the IA32_TME_ACTIVATE MSR. The IA32_MKTME_KEYID_PARTITIONING MSR can be used
for reading the numbers of private and shared HKIDs. Intel reserves a range of upper bits in
the 64-bit physical address. The HKID uses these reserved bits. The remaining bits following
the HKID correspond to the physical memory address. The upper bits of the HKID field, the
TDX_RESERVED_KEYID_BITS are reserved for private HKIDs. For example, if MK_TME_KEYID_BITS

is 6 and TDX_RESERVED_KEYID_BITS is 4, then HKIDs from 0 to 3 are shared, and HKIDs from 4 to
63 are private.
The hypervisor and the TDX Module configure the memory encryption by setting the HKID

in the upper bits of the physical address of a memory page. The hypervisor can only use shared
HKIDs, while the TDX Module can use both shared and private HKIDs. An exception will be
raised if any software executing outside SEAM mode tries to access memory through a physical
address with a private HKID.

8.2 TD Memory Integrity Protection

TDX always protects the integrity of the TD’s private memory content. This protection is required
because an entity outside the SEAMmode,e.g., a malicious hypervisor or a DMA device, can write
to the TD’s private memory. TDX cannot prevent such modification, but it can detect and flag it. It
prevents a TD or the TDX Module from reading the tampered content. To detect such tampering,
TDX supports two memory integrity modes that can be configured on a system:
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(1) Logical Integrity (Li): memory integrity is protected by a TD Owner Bit.
(2) Cryptographic Integrity (Ci): memory integrity is protected by a MAC and a TD Owner
Bit.

Both Li and Ci apply to a physical memory segment with the size of a cache line and whose address
is cache line aligned. Ci can detect modifications made by direct physical access to the memory or
bit flips, such as the Rowhammer attack [45], which Li cannot detect.
In addition to Li and Ci, if a program outside the SEAMmode reads the private memory of a TD

or the TDX Module, the read will always return zeros. This is to prevent ciphertext cryptanalysis
and side channels in which a program outside the SEAMmode could determinewhether a program
in the SEAM mode changes the memory content.
If a TD or the TDXModule writes to amemory segment belonging to a TD’s privatememory, the

corresponding TD Owner Bit is set to 1. Due to the way a TD’s memory is set up, all TD Owner
Bits of a TD’s private memory should be set to 1. However, if an entity outside the SEAM mode
writes to a segment belonging to the private memory, the corresponding TD Owner Bit is cleared
to 0. Later, when the TD or the TDXModule reads the segment, the segment is marked as poisoned.
If the reader is the TD, this poisoned marking causes a TD exit for the TD. The TDX Module can
capture this TD exit and put the TD into a fatal state, which prevents any further entry into the
TD and leads to the tearing down of the TD. If the TDX Module reads the poisoned content, the
TDX Module and the TDX’s hardware extension in the processor are marked as disabled. Any
further SEAMCALLs leads to the VMFailInvalid error.
If Ci is enabled, the processor generates a 128-bit MAC key during system initialization. On each

write, TDX uses this key to calculate and store a 28-bit MAC in the ECC memory corresponding to
the cache line. On each read, the memory controller recalculates theMAC and compares it with the
value read from the ECC memory. The mismatch indicates integrity or authenticity violation and
results in the cache line being marked as poisoned. The MAC is calculated over (1) the ciphertext
(encrypted content of the cache line), (2) the tweak values used for AES-XTS encryption, (3) the
TD Owner Bit, and (4) the 128-bit MAC key.

9 REMOTE ATTESTATION

The attestation of a TD consists of generating a local attestation report, which can be verified
on the platform, and then extending this report with digital signatures and certificates to enable
remote attestation of the TD off the platform. We first describe the overall process of generating
and extending a local TD report in Section 9.1. Then we review the setup and the configura-
tion of the host TDX platform to enable remote attestation in Section 9.2. Finally, we provide
details on using remote attestation for establishing a secure channel and encrypted boot in
Section 9.3.

9.1 Attestation Process

Several steps are involved when generating and extending a local report of a TD to enable remote
attestation. The first step is to take measurements of the loaded software during the build-time
and runtime of the TD. The next step is to retrieve the TD’s measurements and platform TCB
information, i.e., generating a TD report. The final step is to derive aqote from the TD report.
A third party can use the qote to verify whether the TD runs on a genuine TDX platform with
the expected TCB versions and software measurements.

Taking Measurements. TDX provides two types of measurement registers for each TD: a build-
time measurement register called Measurement of Trust Domain (MRTD) and four Runtime
Measurement Registers (RTMRs). These measurement registers are comparable to the TPM’s
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Table 3. Mapping of TDX Measurement Registers and TPM PCRs

TDX Measurement Registers TPM PCRs Usage

MRTD PCR[0] Virtual firmware

RTMR [0] PCR[1,7] Virtual firmware data + configuration

RTMR [1] PCR[2-5] OS kernel + initrd + boot parameters
RTMR [2] PCR[8-15] OS application

RTMR [3] N/A Reserved

PCRs, see Table 3 derived from [41] showing the mapping between TDX measurement registers
and TPM PCRs.
The MRTD contains a measurement of the TD build process. At the TD creation, when the

hypervisor adds initial memory pages to the TD, it extends the MRTD in the TDCS with mea-
surements of these pages. The hypervisor calls SEAMCALL[TDH.MEM.PAGE.ADD] to add a page to the
TD’s memory and to initiate the measurement of the page. It first calculates a SHA384 update over
the ASCII string “MEM.PAGE.ADD” and the GPA of the page. Then it extends the MRTD with
the hash value. Once the page is copied into the TD’s memory, i.e., mapped and available in the
SEPT, the hypervisor calls SEAMCALL[TDH.MR.EXTEND] multiple times to measure the content of
the page. The page is measured in blocks of 256 B. For each block, the extension operation first
calculates a SHA384 update over the ASCII string “MR.EXTEND” and the GPA of the block. Sec-
ond, it calculates another SHA384 update over the content of this block. Both hash values extend
the MRTD. These initial pages contain the TD’s virtual firmware. The MRTD’s measurement does
not include pages containing control structures, i.e., TDR, TDCS, and TDVPS, nor the SEPT. Af-
ter the initial set of pages is added, the hypervisor finalizes the MRTD measurement using the
SEAMCALL[TDH.MR.FINALIZE] . This disables future operations to extend the MRTD. For example,
when initializing a TD, KVM, as a Linux hypervisor, measures the TDVF [33] (virtual firmware of
a TD) code into the MRTD.
RTMRs are general measurement registers labeled 0 through 3 for TD’s runtime measure-

ments. A TD can use these registers to provide a measured boot, i.e., measuring all soft-
ware loaded after booting. These measurement registers are initialized to zero. The TD calls
TDCALL[TDG.MR.RTMR.EXTEND] to extend the content of a RTMR. The arguments of this call consist
of an index to the measurement register and a 64 B-aligned physical address of the 48 B exten-
sion buffer containing the value. This call calculates a SHA384 hash over the current value of
the given index measurement register concatenated with the value in the extension buffer, i.e.,
RTMR[index] = SHA384(RTMR[index] || value) . For example, TDVF measures the static/dynamic

configuration data into the RTMR[0] and the OS kernel, boot parameters, and initrd into the

RTMR[1] .

Generating TD Reports. A report is generated inside a TD. The TD calls
TDCALL[TDG.MR.REPORT] , which is the TDX Module’s report function, with a newly initial-

ized report structure and some user report data, named REPORTDATA . The REPORTDATA is 64 B
and it can be used as a nonce to verify freshness of the TD report. To service the call, the TDX
Module invokes the newly added SEAMOPS[SEAMRERPORT] instruction with the TD’s measurements

and REPORTDATA . The CPU adds TCB information related to the SEAM and returns a TD report.
This TD report is integrity protected using an HMAC key maintained by the CPU. The HMAC
key is only available to the CPU. The TDX Module returns this report to the TD. Using the
EVERIFYREPORT2 instruction, an enclave can verify the report on the same platform but not off
the platform.
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Fig. 8. TD report structure.

Figure 8 illustrates a TD report consisting of three components: REPORTMACSTRUCT ,

TEE_TCB_INFO , and TD_INFO . The REPORTMACSTRUCT structure contains header information

specifying the structure type as TDX and has fields for CPU SVN and hashes of the TEE_TCB_INFO

and TD_INFO components. It also includes the REPORTDATA provided as the input to the

TDCALL[TDG.MR.REPORT] function. Finally, there is an HMAC over the entire header that protects

TEE_TCB_INFO and TD_INFO components. The TEE_TCB_INFO structure contains information

about the SVN and measurements of the TDX Module. The TD_INFO contains TD attestable
properties. Examples of these properties include the initial TD configuration and values of the
measurement registers.

Deriving Quotes. To enable verification off the platform by a third party, the TD report must
be converted into a qote. TDX tends to reuse the remote attestation mechanism of SGX. A TD
makes a call to request the QE running on the host platform to sign the TD report. This call
can be implemented over a VSOCK or a TDCALL[TDG.VP.VMCALL] , depending on how the quoting

service is provided on the platform. The QE calls the EVERIFYREPORT2 instruction to verify the TD
report’s HMAC. If this call is successful, the QE signs the TD report using its certified attestation
key to generate a qote. This operation basically replaces the MAC integrity protection of the
TD report with the digital signature protection, allowing any party to verify the provenance
and integrity of the qote using public key certificates. Section 9.2 describes the operations for
enabling the local attestation infrastructure on the platform to support remote attestation.

9.2 Platform Setup

Configuring the attestation infrastructure involves registering the platform with the Intel PCS,
running architectural enclaves for generating qotes, and retrieving certificates required for ver-
ifying qotes. Intel extends the existing DCAP [58] to support remote attestation for TDX.

Registration. On multiple-package platforms, platform keys are derived at platform assembly
time. These keys are shared between CPU-packages and are encrypted by the CPU’s unique
hardware key. Provisioning Certification Keys (PCKs) are derived from the platform keys and
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Fig. 9. Quote certificate chain.

used for certifying (signing) attestation keys. Since PCKs are not recognized by the attestation
infrastructure, they must be registered with Intel PCS.
To register a platform, we need to run the PCK Cert ID Retrieval Tool to extract a manifest

from the platform. This manifest contains information on CPU packages, e.g., CPU ID (128-bit),
SVN, and hardware TCB information.When the Intel PCS gets the register server request, it checks
whether CPUs and TCB are in good standing before issuing a PCK certificate. The manifest is
signed with keys derived from the CPU package’s hardware keys and the Intel PCS checks whether
these signatures are valid. If registration succeeds, the Intel PCS returns an Intel-issued certificate
for the PCK.
Typically in DCAP, a Provisioning Certification Caching service (PCCS) runs on the host

platform to facilitate PCK certificate retrieval. This service can run anywhere. It forwards the PCK
requests from the PCK Cert ID Retrieval Tool to the Intel PCS and caches the returned PCK
certificates locally. The Intel PCS also provides certificates and revocation lists for PCKs in all
genuine Intel platforms. PCCS maintains local caches of these artifacts as well.
Before registering, a platform must have the appropriate UEFI/BIOS settings and access to the

Intel PCS. Both TDX and SGX must be enabled in the UEFI/BIOS on the host platform. An Intel
account is required for retrieving API keys for registering a platform with the Intel PCS. If the
PCCS is utilized, it must be configured with the API keys and Intel PCS server’s address.

Architectural Enclaves. To enable qote generation on the platform. Intel provides two archi-
tectural enclaves: Provisioning Certificate Enclave (PCE) and QE. The PCE acts as a local
certification authority for the QE. In its initialization process, the QE generates an attestation key
pair. It sends the public part to the PCE. The PCE authenticates that this is a legitimate QE on
the platform and then signs the attestation public key certificate with the PCK. This signature
creates a qote certificate chain from an Intel-issued PCK certificate to the QE attestation public
key. Figure 9 illustrates the qote’s certificate chain. The PCK certificate is used for verifying the
QE attestation public key certificate, and the QE attestation public key in turn for verifying the
signature on the qote.

Remote Attestation Flow. Figure 10 shows a remote third party performing attestation with an
attestation agent running on a TD. The remote party sends an attestation request providing
a nonce to the attestation agent (Step 1). The nonce provides freshness to the request and
prevents replay attacks. The attestation agent retrieves a TD report from the TDX Module
providing the nonce as the REPORTDATA (Step 2) and then subsequently requests the QE to sign
the TD report using its attestation key (Step 3). The QE verifies that the TD report is generated
on the platform before signing with its attestation key. The attestation agent then returns the
qote to the remote party (Step 4).
The remote party requires the platform’s PCK certificate to verify theqote, so it may download

the PCK certificate from a PCCS (Step 5) or retrieve directly from the Intel PCS (Step 6). The party
then proceeds to validate the qote (Step 7). It checks for the nonce in the qote and verifies
the integrity of the signature chain from the Intel-issued PCK certificate to the signed qote,
walking the certificate chain to determine whether theqote has a valid signature. The party also

ACM Comput. Surv., Vol. 56, No. 9, Article 238. Publication date: April 2024.



Intel TDX Demystified: A Top-Down Approach 238:27

Fig. 10. A remote attestation flow.

checks that no keys in the chain have been revoked and whether the TCB is up-to-date. Finally,
the party checks if the measurements, i.e., values in MRTD and RTMRs, in the qote match a set
of reference values. If it successfully validates the qote, the remote party can trust that the TD
has been properly instantiated on a TDX platform.

9.3 Use Cases

Secure Channel Establishment. Remote attestation can be integrated with establishing a secure
channel [46], linking channel setup with the endpoint’s TEE identity, state, and configuration.
This integration prevents relay attacks since an attacker cannot forward a challenger’s attestation
request from a compromised system to a trusted system to service the request.
In a typical scenario when a client negotiates a secure channel with a server running in a TEE, it

wants to ensure a connection with a properly instantiated server. The server, serving as an attester,
generates an ephemeral public and private key pair. It computes the hash of the public key and
then creates a TD report providing this hash as the REPORTDATA . The server requests a qote of
the report and generates a self-signed certificate with the qote embedded in the certificate. It
provides this self-signed certificate as the server certificate in the TLS handshake protocol. When
the client, serving as the challenger, receives the server certificate, it verifies signatures on the
certificate and validates the embedded qote in the certificate, including the measurements. It
also checks if the qote includes the hash of the public key since this links the key to the TEE.
When establishing a secure channel, both client and server can assume the roles of attester and
verifier. This allows endpoints running in TEEs to mutually authenticate each other by validating
TEEs.

Encrypted Boot.Using remote attestation, we can launch a TDwith an encrypted partition image
and let the tenant control the release of the partition decryption key. Figure 11 illustrates the
execution flow of an encrypted boot of a TD. An attestation agent is placed within the TD’s
initrd and starts when a TD is launched. The agent retrieves the TD’s qote, which contains
the TCB measurements (from the TDX platform up to the initrd), and is signed by Intel’s QE.
The qote is sent over a secure channel to an attestation server controlled by the tenant for
verification. Once a qote is verified with the expected measurements, the attestation server
provides the decryption key for the partition to the attestation agent. The agent then uses
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Fig. 11. Encrypted boot flow.

this key to decrypt and mount the encrypted partition that contains the secrets. This ensures that
secrets can only be loaded into encrypted memory and are not visible to the host.
Tenants also have the flexibility to integrate the attestation agent in the virtual BIOS and

wrap the entire VMworkload within an encrypted image. In this case, the virtual BIOS needs to be
extended to support the functionalities of retrieving theqote and fetching the key for mounting
the encrypted disk image.

10 CONCLUSION

In this article, we provide a top-down review of Intel TDX, covering its security principles, threat
model, underpinning technologies, system architecture, and future features. We then dive deeper
into the design of the TDX Module, memory protection mechanisms, and remote attestation. The
review is based on publicly available documentation and source code. As confidential computing is
a fast-evolving field, we highlight ongoing challenges and efforts, including the need to support live
migration and trusted I/O.Wewill continue to conduct in-depth security analysis as the technology
progresses.
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